
Developer Portals

WINTER 2018
A selection of articles

about developer portals

and API documentation

Table of Contents
Introduction
Welcome

API Docs theory
A Brief History of API Docs
Good API Documentation Is Not About Choosing the Right Tool
API Documentation
API Design Guidelines
A Guide to RESTful API Design: 35+Must Reads
What is the Difference between API Documentation and a Developer
Portal?
CIDM Ideas 2018

Developer Portal Analyses
The Best Developer Experience KPIs
What is the Role of Blogs in the Developer Journey?
The Function of API Use Cases and Case Studies on Developer Portals
Find out How Typeform is Building the Ultimate Developer Experience
What is the MVP for a Developer Portal?
API the Docs

Toolchains and docs as code
Case Study: Switching Tools to Docs-as-Code
Building a Developer Portal? Here are Four Key Questions to Answer First
8 Common Customizations for Drupal-based Developer Portals
Tool the Docs

Authors

4 
5 

14 
23 
25 
28 
30 

43

45 
46 
50 
69 
88 
97 

111

124 
125 
143 
147 
151

162

INTRODUCTION

http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b

Welcome to the Developer Portals Winter
2018 articles collection

Last year, we experimented with publishing an e-magazine about API
documentation and developer portals. In Developer Portals Summer 2017
we collected our recent articles and featured highlights from the past
semester’s publications on API documentation.

This was a great exercise. Our team greatly benefits from anthologies and
compilations made by others, and we now give you ours, hoping it will be
useful to you too. We hope our digest gives you new insights about
developer portals and API documentation. We thank all writers and
presenters contributing to this magazine!

This winter's Pronovix e-magazine is a selection of our developer portals
newsletter content from September 2017 until February 2018 as well as a
curation of recent publications we think had great impact on the developer
portal scene.

Topics featured in this digest:

• Theory behind creating great API documentation
• Analyses of developer portals to find out about best practices
• Recommendations on toolchains and docs as code
• Event recaps in the same topics: CIDM Ideas, API the Docs

Amsterdam, Tool the Docs Fosdem

Subscribe to our newsletter
If you’re interested in developer portals and API documentation, make sure
you subscribe to our newsletter to receive a copy of our Developer Portal
Components white paper and our future research publications. We also
regularly share video recordings of conference talks and workshops. Be the

first to hear whenever we have a new blogpost about API documentation,
Developer Portals best practices, Developer Evangelism, or about

technology that will help you optimize your API's developer
experience.

We hope you’ll enjoy this e-magazine. If so, stay tuned
for the next edition that will come to you this summer!

Kristof and the Pronovix team 

Kristof Van Tomme
CEO and co-founder of
Pronovix

https://pronovix.com/developer-portals-e-magazine-2017-summer
https://pronovix.com/developer-portals-e-magazine-2017-summer
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b

API DOCS THEORY

http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b

A Brief History of API Docs
Bob Watson
http://docsbydesign.com/2017/09/20/a-brief-history-of-api-docs/

http://docsbydesign.com/2017/09/20/a-brief-history-of-api-docs/
http://docsbydesign.com/2017/09/20/a-brief-history-of-api-docs/

I published my first API around 1988 for a peripheral to the
IBM PC in which the API consisted of software interrupts to
MS-DOS. (A software interrupt is similar in function to a procedure
call, but used for operating system and device driver functions. I didn’t
write the documentation (at least not the published version), but a couple of
co-workers and I wrote the interface.

Later, I want to say in 1997-ish, I wrote the API provided by the Performance Data
Helper (PDH) dynamic link library (DLL) that shipped in Microsoft Windows NT 4.0 (IIRC). I
didn’t write the documentation for this API either as I was still developing software at the
time. A super technical writer did the heavy lifting of making sense out of the functions the
PDH.DLL provided.

While this isn’t a particularly impressive resume of API development, it shows that APIs
and I go way back. They are a very useful tool for solving many problems. Yet, over the
past 30+ years that I’ve been using, developing, and documenting APIs, there hasn’t really
been much written about their documentation–until recently.

In my informal count (i.e. what I could find on Google while having my morning coffee a
few days ago). I came across 17 articles and blog posts on the topic in just the past seven
years (full list at the end of the post).

For the curious, here is some of the research that supports what I’ve read in some of these
articles.

It’s not really a surprise that APIs are getting more attention lately–their popularity and
notoriety have soared in recent years; however, as with so much in technical writing lore,
some of what’s been written is based on research, some on personal and anecdotal
experience, and much on hearsay (when someone quotes or references someone else’s
personal, anecdotal experience).

In Academic paper references, I list the API documentation-related references that I’ve
cited in my publications over the years. The good news is that there is now quite a
collection of academic research out there, and the better news is there have been many

6

http://docsbydesign.com/2017/09/11/tech-comm-myths-site-is-live/
http://docsbydesign.com/2017/09/11/tech-comm-myths-site-is-live/
http://docsbydesign.com/useful-stuff/academic-paper-references/
http://docsbydesign.com/useful-stuff/academic-paper-references/

new studies on the topic in recent years (which reminds me, I need to update that list).
This is in stark contrast to 2008, when I was getting started in researching API
documentation seriously. At that time the list of API documentation-related studies would
literally fit in one hand (as in one per finger).

Here are some of the studies I’ve reviewed on the subject, organized by theme in a sort of
annotated bibliography.

API reference topic content
The study in a recent article, API documentation – What software engineers can teach us,
is very similar in methods and findings to a study conducted at Microsoft by an academic
and a Microsoft researcher in 2008 and published in 2009 with a longer version published
in 2011.

• Robillard, M. P. (2009). What makes apis hard to learn? answers from developers.
Software, IEEE, 26(6), 27–34.

• Robillard, M. P., & DeLine, R. (2011). A field study of API learning obstacles.
Empirical Software Engineering, 16(6), 703–732.

• A related study, though with a slightly different focus was published a few years
later, as well.

• Maalej, W., & Robillard, M. P. (2013). Patterns of Knowledge in API Reference
Documentation. IEEE Transactions on Software Engineering, 39(9),

The reason I remember those was because they took a critical (and unflattering) position
towards API documentation (which, at the time, I was writing a lot of, so I was probably a
little sensitive to the topic). Honestly, the studies were fair and reasonable, however
another related article from around that time took a more provocative tone:

• Parnin, C. (2013, March 4). API Documentation – Why it sucks [blog]. Retrieved
November 2, 2014, from http://blog.ninlabs.com/2013/03/api-documentation/

As a practitioner at the time, it was frustrating to hear, in scientific detail, how API
documentation (like what I was writing) presented all manner of learning obstacles to
developers, while seeing, first-hand, that many of the problems cited in those articles

7

https://www.parson-europe.com/en/blog/440-api-documentation.html
https://www.parson-europe.com/en/blog/440-api-documentation.html
http://blog.ninlabs.com/2013/03/api-documentation/
http://blog.ninlabs.com/2013/03/api-documentation/

could be solved easily and quickly just by adding a few
(hundred) more technical writers to the job. My thought at the time
was, “So, what’s the big deal? You just discovered that technical
writing is understaffed.”

What I felt was missing from those articles, as a practitioner, was the context to
know, working with the assumption that the writing will be severely
under-resourced, how much of what to write in any particular circumstance. This
inspired my Audience-Market-Product thread and later webinar.

API usability
Ten years ago, as a technical writer tasked with documenting hundreds (ultimately,
thousands) of interfaces and methods, I noticed how the same amount of documentation
seemed overkill in some cases and woefully insufficient in others. It was then I learned
about the notion of API usability. I used my yarn example to explain it:

To warm your hands, a ball of yarn and a pair of knitting needles need much more
documentation than a pair of gloves made from the same yarn.

Some API methods and interfaces were, essentially, what a ball of yarn would look like if it
were implemented in C#, while others were as easy to use as a pair of gloves. Likewise,
the audience’s skill and knowledge is critical to how much you document and about what.
You wouldn’t, for example, describe the step-by-step process of knitting to an expert, you
would cover it at a higher level of abstraction by referring to specific stitch styles.

It turns out, I wasn’t the first to realize this–some of those who got there before me,
include:

• Bloch, J. (2006). How to design a good API and why it matters. In Companion to the
21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications (pp. 506–507). ACM.

• Clarke, S. (2005). Describing and measuring API usability with the cognitive
dimensions. Presented at the Cognitive Dimensions of Notations 10th Anniversary
Workshop, Citeseer.

8

http://docsbydesign.com/category/technical-writing/audience-market-product/
http://docsbydesign.com/category/technical-writing/audience-market-product/

• Cwalina, K., & Abrams, B. (2008). Framework design guidelines: conventions, idioms,
and patterns for reusable. net libraries. Addison-Wesley Professional.

• Henning, M. (2007). API design matters. Queue, 5(4), 24–36.

API usability as a topic in the press comes and goes (mostly goes), but in 2005 it was all
the rage (-ish). Nowadays, I hear, it’s just “good practice.” Good practice, agreed, but not
practiced consistently. In any case,

Any API documentation advice or guidelines that don’t take the API’s usability into
account are going to be as comfortable to use as shoes you buy without taking the

size of your foot into account.

The next time you tackle documenting an API, consider if it’s a ball of yarn or a pair of
gloves.

Software developer personas
The developer personas, such as those mentioned in API documentation – What software
engineers can teach us, were identified by a Microsoft researcher in 2004.

• Clarke, S. (2004, May 1). Measuring API Usability. Retrieved December 13, 2016,
from http://www.drdobbs.com/windows/measuring-api-usability/184405654

• Clarke, S. (2007, February 7). What is an End User Software Engineer?
[InProceedings]. Retrieved October 26, 2014, from
http://drops.dagstuhl.de/opus/volltexte/2007/1080/

Clarke wrote many other related blog posts and articles during the 2004-5 time frame. At
the time, Microsoft was doing a lot of research into API usability while the .NET Framework
was growing thousands of new interfaces and methods each month.

I talked with Steven after reading his articles and he told me that those personas didn’t
really represent people, per se, as much as how developers might approach a problem.
The same person could, for example, be a detail-oriented, systematic developer on one
problem (say, for example, while researching an API to use in a system design) and, at the
same time, be a quick-and-dirty, opportunistic developer while writing some code to test
it. (Personas described in: Clarke, S. (2007, February 7). What is an End User Software

9

https://www.parson-europe.com/en/blog/440-api-documentation.html
https://www.parson-europe.com/en/blog/440-api-documentation.html
https://www.parson-europe.com/en/blog/440-api-documentation.html
https://www.parson-europe.com/en/blog/440-api-documentation.html
http://www.drdobbs.com/windows/measuring-api-usability/184405654
http://www.drdobbs.com/windows/measuring-api-usability/184405654
http://drops.dagstuhl.de/opus/volltexte/2007/1080/
http://drops.dagstuhl.de/opus/volltexte/2007/1080/

Engineer? [InProceedings]. Retrieved October 26, 2014, from
http://drops.dagstuhl.de/opus/volltexte/2007/1080/)

Developer use cases
There was a flurry of research around 2008-9 into how software developers
used documentation. My favorite article about this to cite is:

• Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., & Klemmer, S. R. (2009).
Two studies of opportunistic programming: interleaving web foraging, learning, and
writing code (pp. 1589–1598). Presented at the Proceedings of the SIGCHI.

Specifically,

“Several participants reported using the Web as an alternative to memorizing
routinely-used snippets of code.”

If you can’t do your own user research and can only read one article, I would recommend
this one as the one to read–it’s not very long and has some interesting visualizations of
their data. At the same time, I would also recommend that you always read more than one
study about any subject. So, here are some more on this subject:

• Brandt, J., Dontcheva, M., Weskamp, M., & Klemmer, S. R. (2010). Example-centric
programming: integrating web search into the development environment (pp. 513–
522). Presented at the Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM.

• Brandt, J., Guo, P. J., Lewenstein, J., & Klemmer, S. R. (2008). Opportunistic
programming: How rapid ideation and prototyping occur in practice (pp. 1–5).
Presented at the Proceedings of the 4th international workshop on End-user

• Ko, A. J., Myers, B. A., Coblenz, M. J., & Aung, H. H. (2006). An exploratory study of
how developers seek, relate, and collect relevant information during software
maintenance tasks. Software Engineering, IEEE Transactions on, 32(12), 971–987.

• Stylos, J., & Myers, B. A. (2005). How Programmers Use Internet Resources to Aid
Programming. Submitted for Publication.

10

http://drops.dagstuhl.de/opus/volltexte/2007/1080/
http://drops.dagstuhl.de/opus/volltexte/2007/1080/

• Stylos, J., & Myers, B. A. (2006). Mica: A web-search tool for finding API components
and examples. In Proceedings of the Visual Languages and Human-Centric
Computing, 2006. VL/HCC 2006. IEEE Symposium on (pp. 195–202). IEEE.

Why?
After my preliminary research into the TC Myths project and reading some recent articles
on API documentation, I’m getting the sense that we (technical writers) have a habit of
reinventing and rediscovering the same thing over and over as though we were stuck in
some sort of geeky adaptation of Groundhog Day–an observation made 13 years ago (and
probably earlier, as well), which refers to the fact that academic journals (such as the one
that contains this observation) frequently live behind some rather expensive pay walls and
many are written in “academic.” Which is unfortunate.

Those who cannot remember the past are condemned to repeat it.
–George Santyana

However, if technical writers–people who practice a profession that exists to record things
for others–cannot record their past in an accessible way, which is most unfortunate. In
academia, our writing has to build on past research and theory to both situate a given
article and help keep track of the foundations on which a new argument is made. I don’t
see that as much, in articles written by professionals. Professional articles seem to focus
on the now and the new–without realizing (or without crediting) that what is described is
something from a forgotten past (less than 10 years ago, in some cases). Tom Johnson
explores the academic-practitioner gap in more detail in his blog post Why is there a
divide between academics and practitioners in tech comm?

At the same time, I get it. Sifting through the bucket of academic journals I’ve listed here
and the many more I had to read to arrive at this list is (i.e. it was for me) much more work
than reading a 1,000-word blog post. For a practitioner, the 1,000-word blog post is
probably sufficient–until it isn’t, of course. Unfortunately, it is often hard to tell where the
limits are in a 1,000-word blog post. But, the fact that it’s free to access and a tiny fraction
of the academic-journal word count give the blog post a tremendous advantage.

Yet, it still seems like there must be a better way.

11

http://docsbydesign.com/2017/09/11/tech-comm-myths-site-is-live/
http://docsbydesign.com/2017/09/11/tech-comm-myths-site-is-live/
http://tcmyths.com/refs/why-we-do-the-things-we-do
http://tcmyths.com/refs/why-we-do-the-things-we-do
http://idratherbewriting.com/2015/08/05/acadmic-and-practitioner-divide/
http://idratherbewriting.com/2015/08/05/acadmic-and-practitioner-divide/
http://idratherbewriting.com/2015/08/05/acadmic-and-practitioner-divide/
http://idratherbewriting.com/2015/08/05/acadmic-and-practitioner-divide/

Recent API Documentation Articles (non academic)

As promised, here are the recent articles on API documentation
that I found while having coffee, sorted by date.

12

Title & Link Author Date

Various 4/8/2010

Peter
Gruenbaum 11/12/2010

James Yu 1/11/2012

Irene Ros 8/22/2012

Natalie Kerby 4/2/2015

Ajitesh Kumar 5/17/2015

Keshav
Vasudevan 5/17/2015

Brad Fults 11/13/2015

Katalin
Nagygyörgy 11/13/2015

Dana Fujikaw 5/3/2016

(Not specified) 9/19/2016

Designing Great API Docs

REST API Documentation Best Practices

How to Write “Good” API Documentation

API Tips — How to Write API Documentation

Best Practices in API Documentation

What do you consider good API
documentation?

Web API Documentation Best Practices

Tips and Considerations for Documenting
REST API Documentation

The Best API Documentation

Best practices and UX tips for API
documentation

Best Practices for Writing API Docs and
Keeping Them Up To Date

http://essentialinstructions.ca/tips-and-considerations-for-documenting-rest-api-documentation/
http://essentialinstructions.ca/tips-and-considerations-for-documenting-rest-api-documentation/
http://essentialinstructions.ca/tips-and-considerations-for-documenting-rest-api-documentation/
http://essentialinstructions.ca/tips-and-considerations-for-documenting-rest-api-documentation/
http://essentialinstructions.ca/tips-and-considerations-for-documenting-rest-api-documentation/
http://essentialinstructions.ca/tips-and-considerations-for-documenting-rest-api-documentation/
https://www.programmableweb.com/news/web-api-documentation-best-practices/2010/08/12
https://www.programmableweb.com/news/web-api-documentation-best-practices/2010/08/12
https://stackoverflow.com/questions/1515326/what-do-you-consider-good-api-documentation
https://stackoverflow.com/questions/1515326/what-do-you-consider-good-api-documentation
https://stackoverflow.com/questions/1515326/what-do-you-consider-good-api-documentation
https://stackoverflow.com/questions/1515326/what-do-you-consider-good-api-documentation
http://wwwhttps://dzone.com/articles/best-practices-in-api-documentation.apple.com/
http://wwwhttps://dzone.com/articles/best-practices-in-api-documentation.apple.com/
https://dzone.com/articles/api-tips-how-write-api
https://dzone.com/articles/api-tips-how-write-api
https://blog.cloud-elements.com/how-to-write-good-api-documentation
https://blog.cloud-elements.com/how-to-write-good-api-documentation
http://REST%20API%20Documentation%20Best%20Practices
http://REST%20API%20Documentation%20Best%20Practices
http://blog.parse.com/learn/engineering/designing-great-api-docs/
http://blog.parse.com/learn/engineering/designing-great-api-docs/
https://bradfults.com/the-best-api-documentation-b9e46400379a
https://bradfults.com/the-best-api-documentation-b9e46400379a
https://pronovix.com/blog/best-practices-and-ux-tips-api-documentation
https://pronovix.com/blog/best-practices-and-ux-tips-api-documentation
https://pronovix.com/blog/best-practices-and-ux-tips-api-documentation
https://pronovix.com/blog/best-practices-and-ux-tips-api-documentation
https://blog.readme.io/best-practices-for-writing-api-docs-and-keeping-them-up-to-date/
https://blog.readme.io/best-practices-for-writing-api-docs-and-keeping-them-up-to-date/
https://blog.readme.io/best-practices-for-writing-api-docs-and-keeping-them-up-to-date/
https://blog.readme.io/best-practices-for-writing-api-docs-and-keeping-them-up-to-date/

13

Title & Link Author Date

Ed Marshall 10/6/2016

Kin Lane 11/1/2016

Keshav
Vasudevan 6/20/2017

(Not specified) 9/7/2017

Diana Lakatos 9/19/2017

Tom Johnson No date

Five Questions Every Technical Writer Faces
with API Documentation

API Best Practices: Documentation

Best Practices in API Documentation

The Importance of API Documentation

The Ten Essentials for Good API
Documentation

Documenting APIs: A guide for technical
writers

https://www.madcapsoftware.com/blog/2016/10/06/five-questions-every-technical-writer-faces-api-documentation/
https://www.madcapsoftware.com/blog/2016/10/06/five-questions-every-technical-writer-faces-api-documentation/
https://www.madcapsoftware.com/blog/2016/10/06/five-questions-every-technical-writer-faces-api-documentation/
https://www.madcapsoftware.com/blog/2016/10/06/five-questions-every-technical-writer-faces-api-documentation/
https://blog.hitchhq.com/api-best-practices-documentation-20e050f8669b
https://blog.hitchhq.com/api-best-practices-documentation-20e050f8669b
https://swaggerhub.com/blog/api-documentation/best-practices-in-api-documentation/
https://swaggerhub.com/blog/api-documentation/best-practices-in-api-documentation/
https://www.mulesoft.com/resources/api/guidelines-api-documentation
https://www.mulesoft.com/resources/api/guidelines-api-documentation
https://alistapart.com/article/the-ten-essentials-for-good-api-documentation
https://alistapart.com/article/the-ten-essentials-for-good-api-documentation
https://alistapart.com/article/the-ten-essentials-for-good-api-documentation
https://alistapart.com/article/the-ten-essentials-for-good-api-documentation
https://idratherbewriting.com/learnapidoc/
https://idratherbewriting.com/learnapidoc/
https://idratherbewriting.com/learnapidoc/
https://idratherbewriting.com/learnapidoc/

Good API Documentation
is Not about Choosing the
Right Tool
Maxime Locqueville
https://blog.algolia.com/api-documentation-choosing-right-tool/

https://blog.algolia.com/api-documentation-choosing-right-tool/
https://blog.algolia.com/api-documentation-choosing-right-tool/

As a member of Algolia’s documentation team, I am often asked: “What tool are you using
to build your documentation?” Of course, I answer the question, but I am often tempted to
say that it’s probably the least valuable piece of information I can provide.

In this post, I am going to give you some of that information: what things you should care
about when building your docs, and how those things will make the choice of tool the
least important thing.

Documentation is usually composed of two big parts: the content and the software
rendering it. You might have guessed where I am going with this: a quality README.md
stored on GitHub can be far more efficient than over-engineered documentation that is
well displayed but has issues with content.

The perfect tool is not out there
There are plenty of ways to build API documentation: static website generators (Jekyll,
Hugo, Middleman), web frameworks (Ruby on Rails, Laravel, Django), dedicated doc tools
(Docusaurus, Read the Docs, Sphinx), SaaS products (HelpDocs, Corilla), and that’s just
the tip of the iceberg — there are so many more.

Depending on the one you choose you’ll have more or less flexibility, and more or less
work to build and maintain. All tools will let you decide to a certain extent what you can
do, and constrain you on the other end. I don’t believe there is a tool that can fit 100% of
the needs in the long term. Documentation is something that needs to evolve, and you
may have to change your tools several times as you outgrow certain constraints and have
new needs.

Two years ago, we moved away from an internal tool that was aggregating content from
GitHub ReadMes, a database and an external software managing our FAQ. This change
took us full two months, and this is not counting the months of preparation prior to making
the change.

By far the most time consuming task was to undo the formatting that our original tools
required us to make. We had no consistency — some were Markdown, some were
Markdown with custom extra features, some were plain HTML — and so while moving

15

https://jekyllrb.com
https://jekyllrb.com
https://gohugo.io
https://gohugo.io
https://middlemanapp.com
https://middlemanapp.com
http://rubyonrails.org
http://rubyonrails.org
https://laravel.com
https://laravel.com
https://www.djangoproject.com
https://www.djangoproject.com
https://docusaurus.io
https://docusaurus.io
https://readthedocs.org
https://readthedocs.org
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
https://www.helpdocs.io
https://www.helpdocs.io
https://corilla.com
https://corilla.com

away from our previous tools, we had to edit thousands of
files manually in order to unify everything.

Put the focus on making the tool fit your content (not the
other way around)
Instead of focusing on which tool to use, a better option is to focus on whether
you are doing everything possible to be as little software-dependent as possible. If
you can respond to: “Can I switch easily to a new tool?” with a “Yes!”, then you are on
the right track.

Build all components to be software-independent
While developing custom components, it’s good to keep in mind that they should be as
little dependent on the software as possible.

Now, to answer that question from the beginning of the article…It’s been two years since
we’ve been using Middleman for our main documentation. It’s doing the job, but it has
some downsides and we’ve had to customize it quite a bit to our needs.

Here are some of the things that we added/modified:

• Custom sitemap

• Custom data files system

• Custom snippet generation

• Injections of custom metrics from Google Analytics for ordering purposes (for
example the FAQ entries listed in https://www.algolia.com/doc/faq/ are the most
viewed ones)

• Ability to have a snippet file that can be auto-injected into any content file

• An Algolia indexer

These customizations are done in a way that we can reuse them in any project. The
modifications represent ~800 lines of custom code, which is rather small for
documentation like ours, but it enables us to be able to move data files to any other
software in a matter of days rather than months; this is us adapting the tool to our content.

16

https://middlemanapp.com
https://middlemanapp.com
https://www.algolia.com/doc/
https://www.algolia.com/doc/
https://middlemanapp.com/advanced/sitemap
https://middlemanapp.com/advanced/sitemap
https://middlemanapp.com/advanced/data-files/
https://middlemanapp.com/advanced/data-files/
https://www.algolia.com/doc/faq/
https://www.algolia.com/doc/faq/

Keep the content properly structured
What is even more important is how you organize your content so that you can re-organize
it programmatically when needed, or transform it so it fits another tool.

The more structured the information is, the easier it is to:

– reuse it across different parts of the documentation

– change the organization system itself when needed

Two tips on that front:

	 	 1. Keep the content centralized

As mentioned earlier, our documentation comes from a system that was split in many
different parts. Today, we have documentation in a single repo that you can run
independently from the main website. This removes dependencies and allows us to focus
on content and doc-specific modifications. It also give us the ability to iterate more quickly
both on content and code parts.

	 	 2. Choose the right file format

Also very important is where you write your content. When using a static website
generator, it is “the norm” to put all content inside the Markdown files. This can work for
small docs, but when your documentation starts growing above hundreds of pages, with
different types of content (guides, tutorials, reference, FAQ), and you are seeking
consistency, using structured data files is a better approach.

That’s why at Algolia we documented all methods and parameters in yml files and not
Markdown files. While we ended up with Markdown inside yml, which can seem a bit
counter-intuitive, it is quite useful. It also allows you to reuse the content in different ways
across the website.

17

The two pages above are generated from the same yml file. When editing, this makes it
very easy to keep consistency between different parts of the website.

18

So by focusing in this way on content first – its needs, structure, maintainability – and then
finding and customizing the tool, you can come up with a documentation that is easy and
quick to evolve.

Once this is in place, a good next step is to have your team and customers contributing
content. Which leads me to …

Bonus tip: get more contributions from the team and your customers
….and make those contributions as frictionless as possible.

19

There are a few actions we took to achieve this. When logged
in as an admin, next to every section or code snippet we have an
edit button that links to the correct file in GitHub, enabling admins to
modify the content he or she is currently viewing.

Let’s take an example of a new developer joining the team. One of the first
things they are going to do is learn about the product by working with it. The
easiest route for that is using the documentation. While they are using it, they will
notice typos, unclear bits, undocumented features…if they have to think about where to
provide feedback, or how to edit the file, there is a high chance that they will do nothing
and switch to another task.

And if that’s true for your team, it’s even more true for customers. It is very unlikely that a
user who noticed a typo will look around the website for the support email to tell you that
they found something wrong.

This is one of the reasons we have the following big form at the bottom of every
documentation page and also accessible from every section of the content:

20

The customer cannot miss it and that’s the point: if they see it once they know it’s there
and the friction to contribute is low.

This also has the benefit of giving a great developer experience to our customers. When
someone reports an issue on the doc, it goes straight to our regular support channel,
where we have a good response time. We also fix and deploy a majority of the issues
within the same day. A company that takes immediate actions on feedback gives an
impression of care (one of our core values), and that’s exactly what we are aiming for.

When someone in the team creates or updates a PR, the change will be rebuilt and
deployed to a new domain. To achieve that, we use the continuous deployment feature of
Netlify, which brings several benefits. The main one is ability to preview, not only for the
person doing the PR, but also for the person reviewing it, because they don’t have to deal
with running the doc locally for small changes.

This is just one example of how to reach out to your readers. It creates a virtuous cycle
where everyone (team + customers) contributes more and more, and enjoys doing it.

21

https://www.netlify.com/docs/continuous-deployment/
https://www.netlify.com/docs/continuous-deployment/
https://www.netlify.com/docs/continuous-deployment/
https://www.netlify.com/docs/continuous-deployment/

In short…
There are so many things to consider before worrying about which tool to use. Naturally,
you do have to start somewhere and choose a tool, so I advise you to choose the one you
and your team are most comfortable with. Just keep in mind to focus on the content, and
adapt the tool to the content, not vice versa.

We’d love to hear your feedback and other experiences with this topic: @maxiloc,
@algolia.

22

https://twitter.com/maxiloc
https://twitter.com/maxiloc
https://twitter.com/algolia
https://twitter.com/algolia

API Documentation

Diana Lakatos

https://alistapart.com/article/the-ten-essentials-for-good-api-documentation
https://alistapart.com/article/ten-extras-for-great-api-documentation

https://alistapart.com/article/the-ten-essentials-for-good-api-documentation
https://alistapart.com/article/the-ten-essentials-for-good-api-documentation
https://alistapart.com/article/ten-extras-for-great-api-documentation
https://alistapart.com/article/ten-extras-for-great-api-documentation

Diána Lakatos, senior technical writer at Pronovix, wrote two guest articles for A List
Apart, on the essentials and the extras for your API documentation.

Read the articles here:

The Ten Essentials for Good API Documentation

and here:

Ten Extras for Great API Documentation

24

http://alistapart.com
http://alistapart.com
http://alistapart.com
http://alistapart.com
https://alistapart.com/article/the-ten-essentials-for-good-api-documentation
https://alistapart.com/article/the-ten-essentials-for-good-api-documentation
https://alistapart.com/article/ten-extras-for-great-api-documentation
https://alistapart.com/article/ten-extras-for-great-api-documentation

API Design Guidelines

Sanjay Dalal, Jason Harmon, Erik Hogan, Jayadeba Jena,
Nikhil Kolekar, Gagan Maheshwari , Michael McKenna,
George Petkov, and Andrew Todd

https://github.com/paypal/api-standards/blob/master/api-style-guide.md

https://github.com/paypal/api-standards/blob/master/api-style-guide.md
https://github.com/paypal/api-standards/blob/master/api-style-guide.md

Introduction
The PayPal platform is a collection of reusable services that encapsulate well-defined
business capabilities. Developers are encouraged to access these capabilities through
Application Programming Interfaces (APIs) that enable consistent design patterns and
principles. This facilitates a great developer experience and the ability to quickly compose
complex business processes by combining multiple, complementary capabilities as
building blocks.

PayPal APIs follow the RESTful architectural style as much as possible. To support our
objectives, we have developed a set of rules, standards, and conventions that apply to the
design of RESTful APIs. These have been used to help design and maintain hundreds of
APIs and have evolved over several years to meet the needs of a wide variety of use
cases.

We are sharing these guidelines to help propagate good API design practices in general.
We have pulled extensively from the broader community and believe that it is important to
give back. The documentation is as generic as possible to make it easier to incorporate
into the guidelines you use in your projects. If you have any updates, suggestions, or
additions that you would like to contribute, please feel free to submit a PR or create an
issue.

Document Semantics, Formatting, and Naming
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119.

The words "REST" and "RESTful" MUST be written as presented here, representing the
acronym as all upper-case letters. This is also true of "JSON," "XML," and other
acronyms.

Machine-readable text, such as URLs, HTTP verbs, and source code, are represented
using a fixed-width font.

26

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt

URIs containing variable blocks are specified according to URI
Template RFC 6570. For example, a URL containing a variable
called account_id would be shown as
https://foo.com/accounts/{account_id}/.

HTTP headers are written in camelCase + hyphenated syntax, e.g.
Foo-Request-Id.

Contributors
Sanjay Dalal (former member: PayPal API Platform), Jason Harmon (former member:
PayPal API Platform), Erik Hogan (PayPal API Platform), Jayadeba Jena (PayPal API
Platform), Nikhil Kolekar (PayPal API Platform), Gagan Maheshwari (former member:
PayPal API Platform), Michael McKenna (PayPal Globalization), George Petkov (former
member: PayPal API Platform) and Andrew Todd (PayPal Credit).

Read the whole article here:

https://github.com/paypal/api-standards/blob/master/api-style-guide.md

27

https://tools.ietf.org/html/rfc6570
https://tools.ietf.org/html/rfc6570
https://tools.ietf.org/html/rfc6570
https://tools.ietf.org/html/rfc6570
https://www.linkedin.com/in/sanjaydalal
https://www.linkedin.com/in/sanjaydalal
https://es.linkedin.com/in/jasonhnaustin
https://es.linkedin.com/in/jasonhnaustin
https://www.linkedin.com/in/erik-hogan-81431
https://www.linkedin.com/in/erik-hogan-81431
https://www.linkedin.com/in/jayadeba-jena-1a6a0020
https://www.linkedin.com/in/jayadeba-jena-1a6a0020
https://www.linkedin.com/in/nikhil-kolekar-28627a2/
https://www.linkedin.com/in/nikhil-kolekar-28627a2/
https://www.linkedin.com/in/gaganmaheshwari
https://www.linkedin.com/in/gaganmaheshwari
https://www.linkedin.com/in/mgmckenna
https://www.linkedin.com/in/mgmckenna
https://www.linkedin.com/in/gbpetkov
https://www.linkedin.com/in/gbpetkov
https://github.com/paypal/api-standards/blob/master/api-style-guide.md
https://github.com/paypal/api-standards/blob/master/api-style-guide.md

A Guide to RESTful API Design:
35+ Must-reads

Bill Doerrfeld
https://techbeacon.com/guide-restful-api-design-35-must-reads?amp

https://techbeacon.com/guide-restful-api-design-35-must-reads?amp
https://techbeacon.com/guide-restful-api-design-35-must-reads?amp

When it comes to designing web APIs, no other style is more
respected than REST. Outlined by Roy Fielding in his famous
dissertation, REST, or representational state transfer, has become the
go-to method for designing powerful APIs that run over HTTP.

Resource naming, hypermedia, proper HTTP method usage, caching,
idempotence, versioning, and other API design elements all come with best
practices. For API developers, learning the nuances of RESTful API design is critical if
they want a high adoption rate for their APIs.

However, a lot has been said on the topic, so I’ve assembled this collection of more than
35 top resources on REST API design—eBooks, tutorials, and articles—that will not only
get you up to speed, but act as a guide throughout your API development lifecycle as well.

Check out the whole collection here:
https://techbeacon.com/guide-restful-api-design-35-must-reads?amp

29

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://techbeacon.com/how-wrap-legacy-systems-rest-apis
https://techbeacon.com/how-wrap-legacy-systems-rest-apis
http://www.restapitutorial.com/lessons/idempotency.html
http://www.restapitutorial.com/lessons/idempotency.html
https://techbeacon.com/guide-restful-api-design-35-must-reads?amp
https://techbeacon.com/guide-restful-api-design-35-must-reads?amp

What is the Difference between
API Documentation and a
Developer Portal?

Kathleen De Roo
https://pronovix.com/blog/what-difference-between-api-documentation-and-developer-portal

https://pronovix.com/blog/what-difference-between-api-documentation-and-developer-portal
https://pronovix.com/blog/what-difference-between-api-documentation-and-developer-portal

A developer portal is more than just the documentation for an
API. As a sort of self-service support hub, it is a key DevRel tool
that helps an organization to provide the best possible developer
experience for its APIs.

A developer portal has a role in support, marketing, sales, and engineering. It is
an environment that:

• Provides all necessary materials and services needed to reduce friction when
working with an API (onboarding, registration, API key provisioning, payments),

• Generates trust and gives an indication if your business will be committed to an API
over a long enough period,

• Helps potential API customers find the developer portal and the API products it
contains through Search Engine Optimization and other web traffic generation,

• Has content for all API stakeholders no matter where they are in their user journey,

• Has tools to manage and maintain the relationship with API customers.

At least that is how we think about developer portals at Pronovix.

A conversation on the #documenting-apis WTD slack channel sparked the idea for this
blog post. @rosewms asked this exciting question and documentarians (@docsbydesign,
@ellispratt, @hangingwater, @jrondeau, @ikoevska, @kvantomme, @lemay,
@melissamahoney, @monique.semp, @neal) shared their unique insights.

What follows is a summary of the discussion.

API documentation and its components
What is the role of a developer portal?
One key question was the role of a developer portal. @lemay points out that, on the one
hand, the way we label API documentation has evolved. On the other hand, the scope of
the developer portal also widened: having a list of endpoints is not enough, give users the
opportunity to learn and understand how an API works:

31

https://pronovix.com/blog/7-trust-signals-help-api-succeed-developer-portal-strategy-part-1
https://pronovix.com/blog/7-trust-signals-help-api-succeed-developer-portal-strategy-part-1
https://pronovix.com/blog/8-stakeholders-developer-portals-developer-portal-strategy-part-2
https://pronovix.com/blog/8-stakeholders-developer-portals-developer-portal-strategy-part-2
https://writethedocs.slack.com/?redir=/messages/C0YH9K2JY
https://writethedocs.slack.com/?redir=/messages/C0YH9K2JY
https://twitter.com/@zelwms
https://twitter.com/@zelwms
https://twitter.com/bobwatsonphd
https://twitter.com/bobwatsonphd
https://twitter.com/ellispratt?lang=en
https://twitter.com/ellispratt?lang=en
https://www.linkedin.com/in/christophergooch/
https://www.linkedin.com/in/christophergooch/
https://twitter.com/bradamante
https://twitter.com/bradamante
https://twitter.com/admatha
https://twitter.com/admatha
https://twitter.com/kvantomme?lang=en
https://twitter.com/kvantomme?lang=en
https://twitter.com/lemay
https://twitter.com/lemay
https://twitter.com/mmariemahoney
https://twitter.com/mmariemahoney
https://www.linkedin.com/in/moniquesemp/
https://www.linkedin.com/in/moniquesemp/
https://twitter.com/nealkaplan?lang=en
https://twitter.com/nealkaplan?lang=en
https://blog.readme.io/why-these-api-docs-are-better-than-yours-and-what-you-can-do-about-it/
https://blog.readme.io/why-these-api-docs-are-better-than-yours-and-what-you-can-do-about-it/
https://blog.readme.io/why-these-api-docs-are-better-than-yours-and-what-you-can-do-about-it/
https://blog.readme.io/why-these-api-docs-are-better-than-yours-and-what-you-can-do-about-it/

@lemay

Traditionally API documentation was narrowly defined as just the reference docs
— just the list of classes, methods, etc. Additional guides, getting started, best
practices, FAQ, etc were other parts of the overall developer docs set. These
days “API docs” seems to mean “all docs related to a developer API”. Also
traditionally the entire developer docs set were rolled up into a package with
samples, starter code, libraries, etc, called the SDK (software development kit).
Depending on the library (and especially for web APIs) the SDK could very well
have been just all docs. So for a while the idea of the developer portal was just
the SDK and API docs, put online. That’s still in many cases what a developer
portal is. It’s a place where developers go to get information about the thing
they’re developing for. More recently as the developer audience itself has grown
and there are more services around developer support, the idea of a developer
portal has grown a lot. It can still be just docs but IMHO typically includes
forums, blog posts, support resources, video, etc, etc, etc. For some developers
— mobile apps come to mind — the developer portal may also be the place
where you submit your code to an app store, manage different versions of your
app, get information and analytics about how your app is doing in the market,
and get paid.

@ikoevska specified the relation between portal and documentation:

So, a Developer Portal would contain API docs but not the other way around I
think.

@ellispratt indicated the different roles a portal can fulfill:

I'd see a portal as training, reference, task/help info, and discussion

We can also interpret the following comments in this light:

32

	 •	 @rosewms highlighted the community:

other factor might be a dedicated, connected
community/forum space as a part of the site

	 •	 @melissamahoney put the role of sandboxes for developer portals
forward:

maybe that one is more traditional documentation and the other is more
like a sandbox?

	 •	 @jrondeau also mentioned sandbox environments:

the portals I've helped develop include sandboxes

	 •	 @ikoevska drew attention to tutorials and code resources:

API docs, to me, mean a reference guide with all the classes, properties,
yada, yada. And tons of examples. Maybe a tutorial or two thrown in for
good measure. And a Hello World app how-to probably

The different roles of a portal are reflected in the documentation types.

API docs is more than reference docs
This fact was pointed out by @jrondeau (“often "API documentation" is shorthand for only
the reference docs - plenty o' other docs also needed”) and @monique.semp (“A
“developer portal” is just a portal to all sorts of docs. The docs likely are API focused, but
should also likely have other things, too”).

Nevertheless it is a truth universally acknowledged, that API docs are often not much more
than, say, a Swagger UI, notices @rosewms (“many people just do the swagger/raml/api
blueprint and call it a day”). While autodoc tools help to produce documentation more
swiftly and error-free, they miss the human touch. A combination of both worlds will create
an environment that addresses every type of user.

33

https://blog.readme.io/why-you-should-let-robots-help-you-write-your-api-documentation/
https://blog.readme.io/why-you-should-let-robots-help-you-write-your-api-documentation/
https://blog.readme.io/why-you-should-let-robots-help-you-write-your-api-documentation/
https://blog.readme.io/why-you-should-let-robots-help-you-write-your-api-documentation/

What documentation types do developers need?
@kvantomme

Most of the portal will still be some sort of documentation, but it will be
organised to help developers move through the different stages faster. A
developer portal can also help to accentuate the role of documentation in the
marketing and sales process. As such I think there is a much larger potential for
ROI.

Developer portals have several stakeholders:

• Developers

- developers inside the company that provides the API product

- consumer developers of the API client and end-consumers

• Product owners

• Marketers

• Salespeople

• Developer evangelists

• Support team members

• Documentarians

Stakeholders go through user journeys. Each stage in those journeys will provoke new
information needs.

With developers as key audience, their user journey includes the following phases:

@kvantomme:

- discovery/research (landing pages)
- evaluation (worked examples)
- getting started (tutorials)
- development/troubleshooting (guides & API reference)

34

https://pronovix.com/blog/8-stakeholders-developer-portals-developer-portal-strategy-part-2
https://pronovix.com/blog/8-stakeholders-developer-portals-developer-portal-strategy-part-2

- celebration (showcases e.g. XYZ did this
amazing app)
- maintenance (e.g. API usage,…)

We could interpret API documentation as the information on the portal
that users might need during their user journey. The docs can be
categorized into types or components, like:

• Support resources, like FAQ pages, knowledge base articles, contact forms,
community sections

• Onboarding documentation, like tutorials, (topic) guides, worked examples, how-to
guides, try out sections (e.g. via a sandbox environment), SDKs

• Troubleshooting documentation, like reference docs

• Showcase options, like case studies, use cases, blogs

• Trust docs, like API status, uptime status

• ...

The listed categories intermingle of course - and there are other ways to list the different
documentation components. At Pronovix, we are currently working on a method to portray
them efficiently.

Terms: documentation, portal, documentation portal, developer portal
A next topic was about terminology and labeling: what to call the docs and the portal?

@rosewms

I’m in the midst of documenting an API so I’m trying to figure out if and what
value add for positioning it as documentation vs developer portal and a lot
of the hosting companies/sites use it interchangeably or don’t show huge
differences regardless of the term used

We came across these synonyms for API documentation during our developer portal
components research:

35

https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns
https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns
https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns
https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns

• Documentation

• Developer documentation

• Developers

• (API) docs

The label “developer portal” causes confusion. Some contributors brought up these
solutions and examples:

@ikoevska

I'd say that Developer Portal is for when your readers are developers. It
should contain various resources and some way to communicate with the
community, also support channels, etc. There should be a downloads
section (if anything is available for download, etc.) While Documentation
Portal stands for documentation only.

@docsbydesign

I've seen the term "portal" used when a product has multiple audiences
(e.g. users and developers). "Dev Portal" is then to distinguish
developer-related stuff from regular user-related stuff. As such, "portal"
content is whatever is interesting to the dev audience but not other
audiences. The challenges come when the lines between the audiences are
not sharp. In which case you need to make sure each reader can tell they
are in the right "portal".

@jrondeau

if devs can get keys, auth, actual access (whether to sandbox or production)
using your content, maybe call it portal

Developer portal types
At one point, the contributors of the discussion started to talk about public and private
portals. Some suggested (like @jrondeau above) to call the platform that is hidden behind

36

a login/paymentwall or authentication process the actual
portal. Others pointed out that, nevertheless, most portals make
quite a few documentation types publicly accessible.

@lemay

Most of the developer portals for apps require a payment to view
them.

@hangingwater

Years ago I worked at a company that sold a graphics SDK and we had
what we called a "support site" - this was an area of the website that only
customers could access (they had to login) where they could find
downloads, SDK docs (API reference, user guides, tutorials, white papers)
and also a support query form and half-hearted FAQ. Nowadays we would
definitely call that a "developer portal".

Basically everything that someone interested in your API/SDK would want
access to, with a landing page explaining where to get everything. I'm
guessing the "developer portal" term came from either Apple or Android? As
@lemay said, the developer centre for Apple iOS devs has tools for
uploading your app to the store, getting stats, etc., so not necessarily all just
to do with programming with the API.

we definitely used to send docs to the senior techies at prospects (or grant
them access to the support site / dev portal). I suppose that does illustrate
that a dev portal may include both public and private aspects - for example
I think anyone can read the iOS developer docs, but you need to be a
member of the Developer Program (and have paid your $99) to get onto the
Dev Centre. Which is the "portal"? In that context is it just the landing page
that orients you to the API docs and also to the Dev Centre (and instructions
about how to join?)

37

We believe there are several types of developer portals, and, moreover, the types can
intermingle:

• Flat access portals: public or firewalled developer portals: The site might be behind
a firewall or you might have to log-in, but its structure is flat: users have access to all
API documentation without segmentation.

• API Catalogues: submission workflows & discovery: Internal agility type of portal.

• Partner & customer APIs: Developer portals with differentiated access permissions:
These portals have personalized restricted access.

• Utility APIs: portals for services with metered access (Pay as you go):
Measurements are based on use.

The diagram below shows how portals can organize a chain of actions to inspire, authorize
and educate.

Infographic: organize a chain of actions to inspire, authorize and educate (by
Pronovix)

38

Role-based access control with Drupal developer portals
Login requirements also connect to keeping specific information private, for several
reasons, like:

• Making a distinction between users or customers

• Business policies

@neal

“a dev portal may include both public and private aspects” — sure, I can
imagine cases where you’d want to protect certain info (if it could be
abused, I assume?)

@hangingwater

well for example in the case of an app store, you can only submit apps to it
or see stats on sales if you are a member of the dev program. Or you may
want to make the documentation relatively freely available, but only paying
customers should be able to actually download the SDK

Drupal developer portals have role-based access control customizations,
which enables API providers to give distinct access. RBAC is able to control
the accessibility of the API products and the corresponding API
documentation based on the groups created and managed within the
system. With this system, developer portal administrators can create
groups, assign content to groups, add members (users) to them, and
manage group visibility or the visibility of specific group content individually.

@kvantomme

Role-based access control is a really big feature for the portals we build,
e.g. to hide docs of APIs that are only accessible for partners or internal
developers. In fact I think that is one of the biggest features that a CMS
based dev portal really excels in, in comparison to static site generators.

39

@hangingwater

Some companies do tend to want to keep all their
developer / SDK documentation secret unless you pay - I
don't personally favour that approach (and perhaps it is
changing). As @kvantomme says, a CMS based portal with
different levels of access may be a good solution

But which services and documentation components should go behind the login or
paywall?

@neal

Excellent things to note: what parts of a dev portal can be left open (less
annoyance/no need to sign in, good for marketing), which pieces are OK to
be behind a login/paywall

Keeping certain content private implies a different marketing strategy.

@kvantomme put it like this:

if your docs are behind a login, you lose all the SEO juice… I think it makes
sense to have a short description for all your APIs public, so that you have
those keywords out there. The actual reference docs you might want to
hide, and then some APIs that you don’t want your other partners to get
mad about (e.g. why do they get that and we don’t), you might want to hide
completely.

One of the best practices to introduce your developer portal documentation types is to
provide a landing page: a front page that gives an overview of all available documentation.
It is the place where users usually land, therefore it is important to communicate the API
product(s) well, based on who your primary personas are and on what they expect of your
site. There are several classification systems to structure information: by documentation
type, by product, by programming language, by objectives. The chosen systems influence
the way users will find information and will work with the portal.

40

https://pronovix.com/blog/developer-portal-components-part-1-overview-pages
https://pronovix.com/blog/developer-portal-components-part-1-overview-pages

Read more about the common customizations for Drupal based developer portals.

Developers and marketing
@neal

and to beat that drum again: documentation is marketing if your dev portal
includes docs, community, and what @kvantomme calls “celebration
showcases”, that’s exactly the sort of thing your potential customers need
to see before they buy

It is said that developers hate marketing. But if you, as pointed out by Adam DuVander,
“share knowledge, not features”, you still market your product, but in a language
developers know and like. Good documentation makes information developers are looking
for available, especially if you optimize it for search engines.

Give developers a reason to share and recommend your portal:

• have a space where developers with successful API integrations receive attention
(e.g. via a community section, a community portal, forum or as a guest author for a
blog post or use case),

• feature their integrations (it increases their market value),

• provide gamification tools that will spread the word about your portal and attract new
users.

If developers can easily share their work, your portal will get visibility among their peers
and drive others to adoption.

@hangingwater

Am I being cynical in thinking the term "dev portal" is largely to distinguish
the dev facing site from the main "dull and boring marketing heavy
corporate website"?

41

https://apigee.com/about/blog/api-technology/8-common-customizations-drupal-based-developer-portals
https://apigee.com/about/blog/api-technology/8-common-customizations-drupal-based-developer-portals
http://www.shareknowledgenotfeatures.com
http://www.shareknowledgenotfeatures.com

Our own research results show that companies often opt for a
developer portal separated from the marketing site (where, of
course, they provide a link to the portal or its documentation).

Final thoughts
• Developer portals initially mainly focused on developers and reference

documentation, but have evolved towards:

- Addressing other stakeholders, like decision makers and technical
writers

- Including documentation types that fit in with the journeys those
stakeholders undertake.

• Organize the documentation on a portal in a way that will help your users move
through the different user journey stages faster.

• API documentation as the medium between the API and the user: combine the
splendors of automatically generated docs with content that addresses users more
personally.

• Provide a landing page and short descriptions about the API, especially when parts
of your portal are behind a login/firewall, in order to optimize search. Make sure the
landing page answers initial questions ad hoc, like:

- what is the product about?

- how can you use it?

Thanks to the people in the WTD slack channel for the idea, comments and suggestions!

42

https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns
https://pronovix.com/blog/developer-portals-best-practices-documentation-patterns

CIDM IDEAS 2018
https://pronovix.com/blog/api-documentation-best-practices

https://pronovix.com/blog/api-documentation-best-practices
https://pronovix.com/blog/api-documentation-best-practices

API Documentation Best Practices
By Diána Lakatos

PRESENTATION AT THE CIDM IDEAS 2018—WRITING WELL ONLINE
CONFERENCE

Organized by the Center for Information–Development Management, IDEAS is a two-day
industry conference including five 60-minute concurrent sessions in two tracks. The theme
of this winter's conference was Writing Well, where we spoke about API Documentation
Best Practices.

In this session we talked about different aspects of API documentation:

• Why API documentation plays an important role in the API economy

• The difference between API documentation and developer portals

• The target audience of API docs

• Developer portal components and best practices for arranging and writing content for
each

• Usability considerations, like interactions, readability and personality

• Ways to edit and keep your documentation up-to-date, workflow considerations, and
the docs like code approach

By the end of the presentation, we hope to have given Technical Writers a solid starting
point for seeing how they can convert their technical writing skills to API documentation
writing, along with some resources that they can use to learn more. Although we aimed
the presentation at Technical Writers, we think that all stakeholders of an API
documentation project can benefit from watching it.

Watch the presentation here.

44

https://pronovix.com/sites/default/files/api_documentation_best_practices.mp4
https://pronovix.com/sites/default/files/api_documentation_best_practices.mp4

DEVELOPER PORTAL
ANALYSES

http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b

The Best Developer Experience
KPIs
Jenny Wanger
https://pronovix.com/blog/best-developer-experience-kpis

https://pronovix.com/blog/best-developer-experience-kpis
https://pronovix.com/blog/best-developer-experience-kpis

I spoke with various Developer Experience product managers about how they measure
success–what KPIs they use and why. It became apparent that the responsibilities of each
DX team shaped the KPIs they use. There are four potential domains that developer
experience teams are responsible for, with different KPIs for each domain.

Of the four areas, everyone I spoke with was responsible for the middle two sections.
Depending on the company, the team also had one of the responsibilities on the ends, but
no team I spoke with was responsible for all four domains. While not everyone tracked the
same KPIs, I will highlight the ones that I found to be the best fit. When discussing the
KPIs below, I define them as primary KPIs and leading indicators. I do this because each
domain has one KPI that is the ultimate measure of success. Because the KPI can be hard
to measure or slow to gather, many teams use leading indicators as secondary metrics to
support their work.

Get people to the developer portal
Not every DX team is responsible for marketing to developers, but plenty of them have
responsibility for developer evangelism. As Cristiano Betta explained to me, if you're
responsible for traffic to your website, then you're really responsible for getting potential

47

The Four DomainsThe Four DomainsThe Four DomainsThe Four DomainsThe Four Domains

Get people to the
developer portal

Convert people on
the developer portal
to customers

Retain developers
Operate the API
gateway or
program

Primary
KPIs

Increasing quality
people landing on the
dev portal

Conversion rate Retention rate Uptime and latency

Leading
Indicators

• Site analytics
• Time on site
• Click-thru rates
• Bounce rates

• Usability testing
and developer
satisfaction

• Time to first hello
world

• Developer
satisfaction

• Adoption and
use of tools

• Deflected
queries

• Pull requests to
open source
projects

https://betta.io
https://betta.io

customers to the point of sale. Given that, your KPI should be
focused on increasing the number of quality visitors that arrive on
your site. This requires defining your target audience, figuring out how
to target them, and serving the right content at the right time. A good
analytics program is critical at this point.

Convert people on the developer portal to customers
Once you have people on your site, it's time to convert them and, just as in ecommerce,
your main KPI becomes your conversion rate. The KPI is easy to understand but hard to
break down, and so leading indicators are especially helpful here. Bandwidth uses
usability testing, time to first hello world, and site analytics together as leading indicators.
The combination of qualitative and quantitative measures here seems especially helpful.

Retain developers
Once you've got your customers, it's time to retain them. As with the conversion piece, all
the product managers I spoke with talked about this domain in one way or another. Some
phrased it as "supporting the developer community" or "working with customers", but it
comes back to retention. The main retention rate is straightforward enough, but leading
indicators are less concrete. Possible metrics include adoption and use of tools, an
increase in volume of API calls, and pull requests on open source projects. Returning to
the ecommerce analogy, it's equivalent to size of shopping cart.

Operate the API gateway or program
The least common responsibility of a DX team is actually managing the operations of their
developer program. In one case the product manager explicitly told me that this is a
DevOps role, and it was not the primary focus of any DX team I spoke to. However, for
those who need to operate the program as a part of their responsibilities, standard
DevOps metrics apply: uptime, latency, etc. The general consensus was that the more
mature the company, the less likely this role would be part of the DX responsibilities.

48

https://www.bandwidth.com
https://www.bandwidth.com

Developer Satisfaction
While each specific area has corresponding KPIs to match, the one piece that touches the
whole spectrum is developer satisfaction. Given that it’s an emotional goal, it’s very hard
to measure with anything concrete. Some use net promoter score, but that gets fuzzy—it’s
hard to separate out satisfaction with your developer experience program versus the
company overall. Slack creates a few leading indicators for developer satisfaction by
keeping an eye on documentation quality and adoption of tools. They’re also great at the
most important part of measuring satisfaction-- listening and talking with their developer
community, whether through online tools or events, which allows them to really capture
the qualitative side of this metric. Others mentioned deflected questions—questions that
get answered through a knowledge base or support flow without requiring a person to
intervene to help the developer find resolution.

Choosing your KPIs
Defining your KPIs is an opportunity to define the scope of your team's responsibilities.
Take the time to connect across your organization to figure out who is taking care of your
customers and at what point; once you know your responsibilities, the KPIs should follow.

49

https://slack.com/developers
https://slack.com/developers

What is the Role of Blogs in the
Developer Journey?

Kathleen De Roo
https://pronovix.com/blog/what-role-blogs-developer-journey

https://pronovix.com/blog/what-role-blogs-developer-journey
https://pronovix.com/blog/what-role-blogs-developer-journey

Companies use blogs as an informal, unstructured communication tool that can engage
current and future customers and members of their wider community. Blogs are often
used to start and maintain relationships, to update an audience, discuss new
functionalities, and to inform about company decisions. Because blog posts are published
as a sequential series of updates, they create a fleeting feeling of urgency, serendipity and
newsworthiness, which makes it much more likely visitors will share blog posts through
social networks.

Blogs also function as a content incubator: an unstructured area in the content
architecture where you can develop new types of content for your developer portal, a
place where new content types “incubate” before they get their own place, like a
company's first "getting started tutorial" or "how to do XYZ" guides.

Most API teams use blog posts on their developer portal or business site as a collection of
documentation formats (tutorials, testimonials, interviews, guides etc). Blog posts can:

	 •	 Educate users:

- Demos and mashups help users explore the API and its functionalities.
- Blog posts often contain code samples and help with problems in specific
areas.

	 •	 Build trust:

- The frequency of blog posts, and the time since the last update are an
indicator of the health of an API.
- Blog posts can communicate policies and team culture.

Blogs can help fulfill these needs throughout the whole API implementation process. In
this post I’ll explore how blogs can serve the portal users’ needs throughout the different
stages of the developer journey. I’ll discuss their labels and subcomponents, and extract
best practices. To finalize, I’ll list some questions to keep in mind when deciding whether,
when and how to plan a blog on your developer portal.

51

To write this post, I reviewed the blogs of Adyen, Amazon, Apigee, CenturyLink,
DigitalOcean, Dropbox, Dwolla, Facebook, GitHub, Google, IBM, Instagram, Keen IO,
LinkedIn, Mapbox, Orange, Pinterest, Slack, Spotify, StackOverflow, Stripe, Twilio and
Twitter. These companies have active communities and/or provide a wide variety of
developer resources. I explored how they organize their blogs and what purposes the
blogs serve.

Blogs in the developer journey
The blogs in our research sample announced events, hooked their users, explained
functionalities, communicated company decisions, linked to other documentation
resources, provided support in certain areas, explained concepts (domain language),
provided code samples, and encouraged users to think out of the box when applying the
API. Blogs are generally filled with videos, images, screenshots and explanations in
everyday English.

Developers go through 6 stages when implementing an API into an application. These 6
stages are discover, evaluate, get started, troubleshoot, celebrate, and maintain :

1. Discover
Optimize the API for search engines: blog posts are often keyword sensitive, they might
help users to find their way to the developer portal and its documentation.

Role: The blog as a marketing tool in the developer’s exploration phase

• Hook users, get them interested in the API product (e.g. add code samples for
developers).

• Add user stories and case studies to reach out to other decision makers, like product
owners and marketing engineers).

• Show interesting integrations that require out of the box thinking.

52

https://www.adyen.com/blog
https://www.adyen.com/blog
https://developer.amazon.com/blogs/home/
https://developer.amazon.com/blogs/home/
https://apigee.com/about/blog
https://apigee.com/about/blog
https://www.ctl.io/developers/blog
https://www.ctl.io/developers/blog
https://blog.digitalocean.com
https://blog.digitalocean.com
https://blogs.dropbox.com/dropbox/
https://blogs.dropbox.com/dropbox/
https://www.dwolla.com/updates/
https://www.dwolla.com/updates/
https://developers.facebook.com/blog/
https://developers.facebook.com/blog/
https://developer.github.com/changes/
https://developer.github.com/changes/
https://developers.googleblog.com
https://developers.googleblog.com
https://developer.ibm.com/dwblog/
https://developer.ibm.com/dwblog/
http://developers.instagram.com
http://developers.instagram.com
https://blog.keen.io
https://blog.keen.io
https://developer.linkedin.com/blog#
https://developer.linkedin.com/blog#
https://blog.mapbox.com
https://blog.mapbox.com
https://partner.orange.com/whats-new/
https://partner.orange.com/whats-new/
https://medium.com/@Pinterest_Engineering
https://medium.com/@Pinterest_Engineering
https://medium.com/slack-developer-blog
https://medium.com/slack-developer-blog
https://labs.spotify.com
https://labs.spotify.com
https://stackoverflow.blog
https://stackoverflow.blog
https://stripe.com/blog
https://stripe.com/blog
https://www.twilio.com/blog/
https://www.twilio.com/blog/
https://blog.twitter.com/developer/en_us.html
https://blog.twitter.com/developer/en_us.html

Use cases or case studies (Dwolla blog)

53

Developer Stories (Slack Blog)

2. Evaluate
Enable people to evaluate what’s on site, via mock APIs, test accounts, tutorials, sample
apps: blog posts and articles can explain how an API works, and how it can be
implemented in plain English.

Role: Blog posts as a collection of (best) practices

• Show expertise: blog post writers bundle knowledge about a specific topic.

• Highlight interesting or popular integration examples and tutorials.

Test Keen IO (Keen IO blog)

54

CenturyLink provides a blog topic
“tutorial”, but this page is also

directly available from the top menu
(CenturyLink blog)

Example of a sample app article (Dropbox
developer blog)

Examples of an integration: complete use
case/tutorial with code snippets, written in

plain English (Twilio blog)

55

3. Get started
Blog posts can include code samples, test cases and user stories that might inspire fellow
developers to get started with their implementation.

Role: Blog posts as onboarding tools

• Include articles for both beginner and experienced users.

• Provide information about your products, e.g. via a topic selector.

• Link to the portal’s knowledge base to find more information on certain topics.

• Explain concepts that your users might need to know before implementing.

Topic selector (IBM developerWorks blog)

56

57

Guest article on customizations, explaining several
concepts (by Pronovix, Apigee blog)

4. Troubleshoot
Blog posts explain and communicate about problem areas and function therefore as
support tools. Blog posts are also an internal evaluation tool: e.g. to explain a product
works you will also be to testing it at the same time.

Role: Blog posts as support resources

• Explain problem areas in plain English.

• Include code snippets.

58

Example of an article with code snippets (Twilio blog)

5. Celebrate
Show developers that you care about their work: offer them a place on your portal, e.g. via
guest posts or in interviews.

Role: Blogs can help grow a community

• Add Call-to-Actions to trigger readers.

• Write series on certain topics, in order to make users return to an interesting story.

• Include real life examples (via interviews, podcasts, guest posts, user stories).

• Announce events, write recaps.

• Provide articles that deal with everyday life tips (e.g. Keen IO’s Culture blog section).

• Make community sections.

• “Put a URL on it”: turn questions from the community into URLs, and provide blog
posts to make it easier for users to find the content they are looking for.

Community section (Twitter blog)

59

https://blog.keen.io/culture/home
https://blog.keen.io/culture/home
https://speakerdeck.com/johndbritton/marketing-to-developers
https://speakerdeck.com/johndbritton/marketing-to-developers

60

Interview section (CenturyLink blog)

Event news (Mapbox blog)

6. Maintain
Companies can use their blog to communicate about the API health.

Role: Blog posts indicate API availability and reliability

• Dedicate articles to news related to API uptime and release notes.

• Illustrate your services that help developers maintain their API integration with
examples, use cases or guidelines.

Post with explanations how to generate release notes (Apigee blog)

61

Labels and subcomponents
In our research sample, we found developer portal blogs (blogs that are directly accessi
ble from the developer portal) and more general blogs that also listed developer topics.

We found several labels:

• Companies put links to blogs in headers, footers, top menu bars, and sidebars
reachable under category labels like blog, news, company, community, support, learn
more, menu and products, API and docs.

• Blogs often received personalized names: besides “blog” or “developer blog”, we
found Developer News (Facebook), The Event Log (Keen IO), Spotify Labs (Spotify),
Updates (Dwolla), Changes (GitHub).

• Apart from their “What’s new” page, Orange has a monthly newsletter, where they
discuss topics that concern several aspects of the company.

• Medium as a platform for a company blog:

DigitalOcean’s blog with audience focused topics

62

https://partner.orange.com/whats-new/
https://partner.orange.com/whats-new/
https://medium.com
https://medium.com

- Either with an overview page of blog posts on the company site, while the
separate articles are published on Medium (Keen IO),
- Or also sometimes with the whole blog on Medium (Slack).

“Developer News” (Facebook blog)

63

Blog on Medium (Slack blog)

https://blog.keen.io
https://blog.keen.io
https://medium.com/slack-developer-blog
https://medium.com/slack-developer-blog

Subcomponents:

• Design elements, like gifs and images to hook users

• Categories, labels, topics, tags to make article selection easier

• Audience focused topics, categories or blogs to address different users

• Subscribe CTAs on the overview page and on blog post pages

• Links to social media, potentially with the total number of shares (twitter, facebook,
linkedIn, google) for social proof

• List of contributors or authors to check writer IDs.

Audience focused blogs (Dropbox blogs)

64

Best practices and remarks
Along my research, I found a few tips and tricks that could help to attract and inspire
users:

• Make the search function user-friendly:

- Opt for topics and categories on top of the page (and not only at the
bottom of the article).

- Turn questions from your users into URLs via blog posts.

- Choose maximum 15 topics or labels to define article categories.

- Archive older posts, but make sure readers can still find them via tags or
labels that indicate the article categories. No-one likes to struggle through
- only - chronologically ordered articles.

List of contributors (StackOverflow blog)

65

• Provide CTAs at the end of each post to make sure your users can easily subscribe.

• Remove outdated blogs.

• List contributors and plan what you will include in the author biographies.

• Focus on different audiences through topics or via separate blogs.

• Provide links to other documentation types (like API references, support pages) on
your blog to facilitate onboarding and to make it easier to replicate a demo. And
vice-versa: give developer portal visitors the opportunity to check blog articles easily.

Google has too many labels to choose from: +50 for the
letter “A” alone (Google blog)

66

• Indicate how much time the reader will have to spend on your article.

Indication of reading time (Keen IO blog)

Developer portal footer: hits from the blog (Twilio)

67

Considering a blog as part of your communication
strategy? Questions to answer
A blog is a great tool to help you develop new types of content on your
developer portal. If you want to iteratively develop your content, and build
out your content architecture as your community grows, it is a great place to
experiment with delivery formats and documentation types. But before you start
you need to ask if your company is ready to maintain one?

• Have you got a writer (team) or guest bloggers, a designer, a content strategist at
your disposal?

• How regularly can you produce new content?

• Do you want to host your blog on your developer portal (and keep users on your site
to find answers) or go for alternative platforms, like Medium, with custom design
options, where you get an inbuilt audience and some distance from your brand to
allow for experimentation?

We are working on a series of content services for developer portals, want to start a blog
but need some help? - Get in touch!

68

https://pronovix.com/contact-us
https://pronovix.com/contact-us

The Function of API Use Cases
& Case Studies on Developer
Portals

Kathleen De Roo
https://pronovix.com/blog/function-api-use-cases-case-studies-developer-portals

https://pronovix.com/blog/function-api-use-cases-case-studies-developer-portals
https://pronovix.com/blog/function-api-use-cases-case-studies-developer-portals

Use cases and case studies are in the grey area between developer and sales
documentation. Some would argue that they are not “real” documentation, and that they
should not be included on a developer portal. However, as web APIs have become
mainstream and strategic so did their documentation portals: the content must also
address the less technical objectives of the non-developer stakeholders.

Use cases and case studies play two crucial roles on a developer portal:

• They act as social proof for your API product (sales function),

• They can be an introduction to more specific, implementation scenario
documentation types.

As with other types of documentation, there is not always a clear distinction between use
cases and case studies: labels (taxonomy), structure (layout) and content depth and tone
diverge depending on the team that is responsible for their implementation.

I selected 18 companies for this research; in this post I’ll give an overview of how they
displayed use cases and case studies: How do these documentation types help
companies to tell their audiences a story? How do they guide users towards specific
content? I’ll talk about benefits and best practices and include some guidelines to set up a
strategy to decide if use cases and case studies might be a good option for your own site.

What is a use case and what is a case study? And what about customer
stories?
Use cases
Use cases describe actions or steps, defining interactions between the user (persona) and
the system to achieve a specific goal or result. Use cases tell users how to obtain that end
result and often address a technical audience that wants to evaluate and understand a
specific problem or solution.

70

https://en.wikipedia.org/wiki/Use_case
https://en.wikipedia.org/wiki/Use_case

Case studies
Case studies present a problem-solving process from the perspective of the

product/service provider and customer company. They are less about showing how
something actually works, and are indispensable when you want to introduce a

solution to a broad audience.

PayPal’s use case subpages list goals, include a sample scenario and a
section with solutions, links to the docs pages and a Call-To-Action

71

Customer stories
Customer stories advocate and/or review a product or service through the words of an
actual user or representative of the customer company.

The companies often listed customer reviews into customer stories or customers. I found
3 possible formats. Customer stories can refer to:

• customer testimonials (text and/or video interviews),

• use cases/case studies that are written from the customer company’s perspective
(spiced up with customer quotes),

• articles written by authors from the client company.

Example of a Dropbox case study that focusses on the
experiences of the customer company. Customer quotes

accompany a description of the project’s challenge, solution

72

Customers: guest authors
provide use cases and

case studies. The content
varies: depending on the
position of the writer the

reader gets more
technical details

(DigitalOcean)

The label Customers leads to customer testimonials (e.g. via video interviews) and
case studies (Apigee)

73

Alternative labeling
Companies sometimes prefer their own custom labels to illustrate product and service
analysis. The reviewed sites used success stories, showcase and customer success
mostly for case studies (as per definition above).

Instagram’s Success stories list case studies of customer companies. The
subpages have a story - quotes - goals - solution outline.

74

Display of use cases and case studies
Primary focus: customer, problem, product, solution?
Several articles give general guidelines on how to display use cases and case studies (e.g.
Wikipedia has an extensive list of what you can include into use cases).

In practice, though, the companies in my sample lot often deviated from those theoretic
blueprints and established their own set of rules.

The primary focus is usually similar. Most of the companies that listed “case studies” were
customer oriented. “Use cases” mostly focused on product/solution (3),
product/solution/customer (2) and solutions (2).

Chart: What do use cases and case studies primarily focus on? (based on the data
provided by 18 companies)

75

https://en.wikipedia.org/wiki/Use_case
https://en.wikipedia.org/wiki/Use_case

We can make a light distinction between:

• Customer and problem oriented scenarios (How did we solve a problem or provide a
service to our client?)

• Product and solution oriented scenarios (What can you achieve with our API
product?)

Stripe use cases focus on product, benefits, solutions and customers.

76

Most companies use a variation of two structures to display information:

	 1	 Customer and problem oriented scenarios could have the following layout:

Some examples:

Case studies: challenge, solution, results on the left, the customer company info
on the right (CenturyLink)

77

	 2	 Product and solution oriented scenarios could follow a layout like this:

Case study on Keen IO’s site: customer company info on the left; graph, mission and
solutions on the right. CTAs at the bottom of the page.

78

Some examples:

 An example of a Twilio use case: Goal, benefits, CTA to contact the
sales team, links to a “build it” tutorial, fact checks about companies

that used this product.

Case study in PDF format with synopsis - situation - challenges - how Dwolla
helped - features used - timeline structure (Dwolla)

79

Search easily: select from categories
Some sites included filtering options like companies, types of industry, topics, featured
cases, regions, product, goals, solutions.

Filtering options:
Industries, solutions

link to case studies of
customer companies

(Orange)

Filtering options: Goal, industry, region and products used all link to case studies of
customer companies (Pinterest)

80

Role in user journeys
Case studies and use cases are API documentation types that can play a role in the user
journeys of both decision makers and developers.

First, they can help new site visitors evaluate what the company’s API product is about by
listing intriguing facts, showcasing features, sharing customer opinions, or celebrating
interesting implementations.

Second, they can help speed up the stakeholders’ user journeys in general, e.g. provide
specific product details (like code snippets) or audience-focused links that lead to a
content niche on site. Where these case studies are placed in the site's architecture
(business site, developer portal, blog) reveals which user-objectives they primarily target.

Customers: interviews with customers, case studies with quotes, videos and articles
by guest authors (Keen IO)

81

Twitter use cases on
the developer portal
focus on solutions
first and then list

benefits, products,
(customer oriented)

case studies, tutorials
and links to more

detailed developer
documentation

sections.

Code snippets
and links to

GitHub in a case
study on the

Google
developer

portal.

82

Primary focus on customer
experience, secondary focus

on “goal - solution”
descriptions for decision
makers (Instagram case
studies on business site)

Twilio provides a Not a Developer? page. The listed use cases try to lead the visitor
towards more and more specific and thus personalized descriptions, with journeys

that could either end on the “Talk to Sales” page or on the developer documentation
pages.

83

Benefits
Use cases and case studies can help market your API:

• They offer a perfect opportunity to introduce product benefits and illustrate specific
solutions. The balance between “share knowledge, not features” also defines to what
extent you are likely to attract developers.

• They can feature the customers themselves and give, a unique insight into the whole
process that goes with researching, evaluating, planning and implementing an API
product.

• They can recommend and celebrate the usage of specific API products, this can
attract new users.

Blogs are informal, unstructured communication tools that can engage current and
future customers: use cases as a content category on the Adyen blog.

84

http://www.shareknowledgenotfeatures.com
http://www.shareknowledgenotfeatures.com

• They are easily accessible: case studies and use cases are usually written in
everyday English. Their structure provides an ideal environment for quick scanning.
Infographics and icons aid comprehension.

• They can shift the focus towards user specific content through subcomponents like
step-by-step guidelines or descriptions, infographics, tables, code snippets, links to
documentation pages, features.

Use case description with resources and guidelines (DigitalOcean)

85

Think ahead: combine your strategic decisions and industrial best
practices
My research sample showed that use cases and case studies, but also customer stories
are widely applied, but the companies that include them define their exact definitions,
labels and use.

In order to be able to decide whether you would include use cases or case studies on your
site to show expertise, I listed a few questions and added some best practices that can
help you decide:

What role will the content play in the user journeys of your primary audience? How does
that influence their place in the site architecture? What page structure, labels and
subcomponents match your personas best?

Best practices: Focus on what your audience would expect to find: make the labels, their
place in the site architecture and the specific subcomponents consistent, e.g.:

An example of overlap in word choice: use cases link to case studies on the Dwolla
blog.

86

• Add use cases (label) with code snippets and descriptions with features
(subcomponents) on the developer portal (place in the site architecture), among other
API documentation types.

• Make customer stories (label) that advocate solutions (subcomponent: description
with quotes) available on the business site (place in the site architecture).

• Add CTAs or in-links to related or more detailed information elsewhere on site.
Include visual design elements, like infographics, videos and icons.

How can you make sure your users will be able to evaluate the provided content quickly?
How can you improve their user experience?

Best practices:

• Write plain English, provide a clear structure and an easily accessible format.

• Provide an overview page with filtering options.

• Add descriptions of how you define use cases and case studies at your company.

This research
For this post, I derived data from the business and developer portal sites of 18 companies
with different business profiles: Adyen (Adyen case studies, Adyen customers), Amazon
(Amazon case studies, Amazon use cases category), Apigee (Apigee API management use
cases, Apigee API management case studies, Apigee customers), CenturyLink
(CenturyLink case studies, CenturyLink use cases category), DigitalOcean (DigitalOcean
customers), Dropbox (Dropbox customers), Dwolla (Dwolla use cases), Facebook
(Facebook success stories), Google (Google showcase), Instagram (Instagram success
stories), Keen IO (Keen IO customers), Mapbox (Mapbox showcase), Orange (Orange
customer stories), PayPal (PayPal use cases), Pinterest (Pinterest success stories), Stripe
(Stripe use cases category, Stripe customers), Twilio (Twilio use cases, Twilio showcase
use cases, Twilio customers, Twilio Not a Developer page) and Twitter (Twitter case
studies, Twitter use cases).

87

https://www.adyen.com/blog/category/case-studies
https://www.adyen.com/blog/category/case-studies
https://www.adyen.com/customers
https://www.adyen.com/customers
https://aws.amazon.com/solutions/case-studies/
https://aws.amazon.com/solutions/case-studies/
https://aws.amazon.com/big-data/use-cases/
https://aws.amazon.com/big-data/use-cases/
https://apigee.com/about/cp/api-management-use-cases
https://apigee.com/about/cp/api-management-use-cases
https://apigee.com/about/cp/api-management-use-cases
https://apigee.com/about/cp/api-management-use-cases
https://apigee.com/about/cp/api-management-case-studies
https://apigee.com/about/cp/api-management-case-studies
https://apigee.com/api-management/#/customers
https://apigee.com/api-management/#/customers
https://www.ctl.io/resources/cloud-case-studies/
https://www.ctl.io/resources/cloud-case-studies/
https://www.ctl.io/managed-services/big-data/use-cases/
https://www.ctl.io/managed-services/big-data/use-cases/
https://www.digitalocean.com/customers/
https://www.digitalocean.com/customers/
https://www.digitalocean.com/customers/
https://www.digitalocean.com/customers/
https://www.dropbox.com/business/customers
https://www.dropbox.com/business/customers
https://www.dwolla.com/updates/category/use-case/
https://www.dwolla.com/updates/category/use-case/
https://developers.facebook.com/success-stories
https://developers.facebook.com/success-stories
https://developers.google.com/web/showcase/
https://developers.google.com/web/showcase/
https://business.instagram.com/success
https://business.instagram.com/success
https://business.instagram.com/success
https://business.instagram.com/success
https://keen.io/customers/
https://keen.io/customers/
https://www.mapbox.com/showcase/
https://www.mapbox.com/showcase/
https://www.orange-business.com/en/case-study
https://www.orange-business.com/en/case-study
https://www.orange-business.com/en/case-study
https://www.orange-business.com/en/case-study
https://business.pinterest.com/en/success-stories
https://business.pinterest.com/en/success-stories
https://stripe.com/connect/use-cases
https://stripe.com/connect/use-cases
https://stripe.com/us/customers
https://stripe.com/us/customers
https://www.twilio.com/use-cases
https://www.twilio.com/use-cases
https://www.twilio.com/showcase/breakout/contact-center
https://www.twilio.com/showcase/breakout/contact-center
https://www.twilio.com/showcase/breakout/contact-center
https://www.twilio.com/showcase/breakout/contact-center
https://customers.twilio.com
https://customers.twilio.com
https://www.twilio.com/not-a-developer
https://www.twilio.com/not-a-developer
https://developer.twitter.com/en/case-studies
https://developer.twitter.com/en/case-studies
https://developer.twitter.com/en/case-studies
https://developer.twitter.com/en/case-studies
https://developer.twitter.com/en/use-cases
https://developer.twitter.com/en/use-cases

Find out How Typeform is
Building the Ultimate Developer
Experience

Jason Harmon
https://www.typeform.com/blog/inside-story/developer-platform/

https://www.typeform.com/blog/inside-story/developer-platform/
https://www.typeform.com/blog/inside-story/developer-platform/

It’s finally here. For months we’ve been working to release our new Developer Platform
and Developer Portal. And we’ve learned a lot.

We’d love to share our experience along this journey, and tell you all about the technical
goodies you should be excited about. But to spare you future headaches, let’s first take a
quick step back.

UX as a service
Here was our goal: build a developer community around our new Developer Platform. This
includes the technology underlying our Application Programming Interfaces (APIs),
Webhooks, and Embed Software Development Kit (SDK), along with our Developer Portal.

It started way back when we launched Typeform.io—a standalone beta, consisting of APIs
to create and manage forms. People were building amazing apps with it, and developers
were excited about “UX as a service.”

89

But after talking with lots of Typeform.io developers, we saw a clear problem: users
wanted their forms to live in their Typeform.com account, and this just wasn’t possible
with the existing platform. (psst: if you’re a Typeform.io developer, please reach out and
we’ll help you transition to our new APIs.)

And then there’s Typeform Version 2 (V2), a brand new version of Typeform with a
completely revamped UX that needed a total architecture overhaul. More on this soon.

So with .io and V2 in mind, we began a massive migration from one big PHP application to
a series of Golang microservices. Translation: the architecture and APIs that now power
our Dev Platform are the exact same as those under the hood of Typeform.com.

Basically, we’re pretty confident you’ll be stepping into a badass developer experience.

Building the ultimate developer experience
In the world of interface design, you often hear about UX—the user experience. In the
developer world, we talk more about DX—you guessed it—the developer experience.

A lot of organizations think of DX as the UX of their developer portal. We went in with a
different mindset. Here’s why.

	 1	 Technical users spend a lot of time using products like APIs with no obvious user
interface. This makes it hard to improve the visual look of these products.

	 2	 Interacting with technical products often happens without visiting a login page,
exploring an account dashboard, or hitting an interface’s button. This makes it hard to
manage the user journey like you do with everyday apps.

90

https://www.typeform.com/help/submit-ticket/
https://www.typeform.com/help/submit-ticket/
https://www.typeform.com/blog/inside-story/typeform-version-2/
https://www.typeform.com/blog/inside-story/typeform-version-2/

It turns out that Typeform’s Developer Platform has two major interfaces where design
principles apply:

Technical documentation
We want developers to discover our new tools, imagine possibilities, and start using them
right off the bat. But unlike everyday apps, reading documentation is a must when
messing with technical products. So we made the structure, content, and readability of our
documentation a key part of our strategy.

API usability
If people start tinkering with a shoddy product, they’re not going to stick around. So we
knew we had to nail the API experience. Even without reading the technical docs, a
developer should have a good sense of what an API can do. This means that the domain
language used in the URLs, request/response models, and any parameters had to be
intuitive.

For this, two simple principles go a long way:

91

• Use your end-users’ domain language

• Think more is less: simpler models are always easier to understand

We’re pleased with how far we’ve come, but we know we still have work to do. That’s why
we’re investigating things like SDKs in a variety of languages. Simple version: it’ll make
creating new projects using APIs or Webhooks a lot less intimidating.

Are you interested in SDKs? You can get involved here.

Don’t build in a bubble
It’s one of the easiest mistakes to make. You set out to build an amazing set of dev tools,
and you start by creating a dedicated API team. Next thing you know, these select few are
off building in a bubble.

We knew that to transform our vision into a platform people wanted, we had to draw on
almost every part of our organization. This meant that virtually all our product development
teams—with their 70+ team members—would be building microservices.

92

https://developerplatform.typeform.com/to/Xc7NMh?source=blog
https://developerplatform.typeform.com/to/Xc7NMh?source=blog

One initiative that makes this possible is OpenAPI. It’s the first
stop for any team proposing API designs. We also use OpenAPI
to share designs with collaborators. The result? Higher quality
feedback sooner, from lots of non-technical stakeholders.

And then there’s the other side of the office. By including our Marketing,
Customer Success, and other non-technical teams, we were able to create a
better experience for both developers and business-oriented users.

First lesson: collaboration. Now we’ve got the whole organization on board. So as we
move forward into more platform-centric thinking, we’ll have everyone up to speed and
contributing in their areas of expertise.

Next lesson: understand your audience.

Developer tries, business buys
Creating a technical platform isn’t just about communicating with a technical audience.
This is what our Developer Portal is all about.

With our customers and partners, we often see that “developer tries, business buys.”
Basically, developers are strong influencers, but they’re not often the final decision
makers.

Here’s an example. Whenever a Typeform user exceeds around 100 responses, they start
moving toward automation. This typically happens in two steps:

1. Use “point-and-click” integration options like Zapier to connect their typeform to their
favorite apps or systems of record.

93

https://www.openapis.org
https://www.openapis.org
https://developer.typeform.com
https://developer.typeform.com

2. Build custom solutions for integrating with their proprietary backends when dedicated
development resources become available.

To make this happen, business users have to validate whether a product has sufficient
developer tooling/APIs to integrate into their product’s infrastructure. And to do this, they
need a quick way to review what’s possible before bugging their engineering teams.

There’s nothing worse than asking a developer to build something that isn’t possible,
especially when you’re already paying for the product.

So what have we done for you? We’ve made a huge effort to create intro content in
non-technical terms. We describe the functionality of the API without going into the 1s and
0s.

For example, for the Create API you’ll find this:

“Create, update, delete, and customize typeforms, themes, and images on the
fly, without using the Typeform builder.”

94

https://developer.typeform.com/create/
https://developer.typeform.com/create/

Even our Marketing Department understands this stuff. In fact, everyone can learn a lot
about developer capabilities from our Developer Portal. We’ve seen it first hand.
Numerous non-technical Typeformers have had “aha” moments after giving the content a
cursory read.

Give it a spin
Now that you’ve heard a little about how we built our Developer Platform, here’s some
ways you can already use it:

• OAuth 2: set up integrations without copying and pasting an API key.

• Create API: create, update, delete, and customize typeforms, themes, and images
on the fly, without using the Typeform builder.

• Webhooks configuration API: tell Typeform where your server is located, so we can
send responses directly to your URL via Webhooks.

95

• Responses API: access the submissions for your
typeforms in JSON format, without setting up webhooks or
third-party integrations.

• Embed SDK: integrate your typeform straight into your website or
web app—you get seamless integration, and people won’t have to leave
your site to respond.

Ready to give it a spin? Take a look at our “Get Started” page for some high-level
ideas, and step-by-step guides for getting set up. We can’t wait to see what you’ll come
up with!

By the way, our own developers have already started building new off-platform
integrations using our APIs. We’re also working with new partners to integrate Typeform
into some of your favorite products using these same tools. Stay tuned.

You’ll also be able to create typeforms and connect them directly to the data inside
products you’re already using. And very soon, you’ll see Typeform connected with more
platforms, including a Cloudflare app.

Follow-up posts on these new integrations are in production, so check back often.

In the meantime, let us know what you built, or are planning to build, and please pass the
word around!

See you on the Interwebs!

96

https://developer.typeform.com/get-started/
https://developer.typeform.com/get-started/

What is the MVP for a
Developer Portal?

Kathleen De Roo and Kristof Van Tomme
https://pronovix.com/blog/what-mvp-developer-portal

https://pronovix.com/blog/what-mvp-developer-portal
https://pronovix.com/blog/what-mvp-developer-portal

What information is absolutely essential on a developer
portal? What kind of API documentation do you need? Is there a
best practice that can be followed when launching a developer
portal? In this post, we share the insights we've learned working on
developer portals the last couple of years.

A quick look at some (API) developer portals will demonstrate that they can be very
different in architectural structure and layout. That is remarkable, because most of the
portals not only need to provide similar end results, they also address comparable
audiences.

We formulated 11 questions that can help you define the content of your portal to
address the documentation needs of your stakeholders. To illustrate how it can be done in
practice we built 3 mock sitemaps for developer portals and examine how they address
the different stages of the developer’s journey.

What is a developer portal?
A lot of API teams publish their "Swagger" documentation and call it a developer portal.
That is wrong on two accounts: the documentation format formerly known as Swagger is
now called the Open API spec, and more crucially, reference documentation is only one
part of the minimum viable developer portal.

Yes, your developer portal needs to contain API reference documentation (no matter what
specification format you use) but a developer portal should also be a sort of self-service
support hub, a trust signal, a communication nexus for API stakeholders and a key
DevRel tool that helps an organization to provide the best possible developer experience
for its APIs.

98

https://pronovix.com/blog/7-trust-signals-help-api-succeed-developer-portal-strategy-part-1
https://pronovix.com/blog/7-trust-signals-help-api-succeed-developer-portal-strategy-part-1
https://pronovix.com/blog/8-stakeholders-developer-portals-developer-portal-strategy-part-2
https://pronovix.com/blog/8-stakeholders-developer-portals-developer-portal-strategy-part-2

11 questions your developer portal needs to answer
We compiled a first list of questions that provides users with the information they might
need while working with your API product:

	 1	 What is this API?

	 2	 How do I get started with this API?

	 3	 What do I need to understand about this API?

	 4	 How do I get X done with this API?

	 5	 Do I know all the details of this API?

A developer portal is the interface between a set of APIs and their various
stakeholders. The portal can play several roles to achieve the business goals of an

organization.

99

	 6	 How do I use your API in Y?

	 7	 Is somebody still working on this API?

	 8	 Where do I go when I have a problem with this API?

	 9	 How do I get access to this API?

	 10	 Can I afford this API?

	 11	 Can I trust this API?

Most of these questions can have a dedicated section on a developer portal and detailed
documentation types can be used to address them. In an MVP however, it is possible to
answer these questions without having dedicated sections.

Throughout this post, we will focus on the (API consuming or also “downstream”)
developer’s journey and apply the following colors to depict its 6 stages:

The 6 stages of the downstream developer journey are discover/
research, evaluate, get started, develop and troubleshoot,

100

1. What is this API?
Landing pages show the site architecture, help to find and navigate documentation, show
what the API offers. Regardless their layout and design, landing pages (also called
overview pages) best answer 5 questions immediately:

• What is the API about? (Purpose and main features of the API)

• How does the API work? (Technical architecture and programming workflow)

• How can I start integrating? (Implementing the API according to a developer’s
personal learning strategy)

• Where can I find resources? (Structure of documentation)

• Can I trust this API? (Trust signals in the broad sense, like pricing information,
release notes, usage policies, API status)

An example of landing page elements that address users with different
learning strategies (concept-oriented vs code-oriented approach).

Note that the architecture and programming workflow explanations
can also provide information about access restrictions. The help and

support section ideally answers several questions at once. [This visual
was inspired by the findings of Peter Gruenbaum (2010) and Kata

Nagygyörgy (2015) and extended with the insights that M. Meng et al.
(2017) and Diána Lakatos (2017) provided on the subject.]

101

https://www.programmableweb.com/news/web-api-documentation-best-practices/2010/08/12
https://www.programmableweb.com/news/web-api-documentation-best-practices/2010/08/12
https://pronovix.com/blog/best-practices-and-ux-tips-api-documentation#
https://pronovix.com/blog/best-practices-and-ux-tips-api-documentation#
https://pronovix.com/blog/best-practices-and-ux-tips-api-documentation#
https://pronovix.com/blog/best-practices-and-ux-tips-api-documentation#
http://journals.sagepub.com/doi/full/10.1177/0047281617721853
http://journals.sagepub.com/doi/full/10.1177/0047281617721853
https://alistapart.com/article/ten-extras-for-great-api-documentation
https://alistapart.com/article/ten-extras-for-great-api-documentation

2. How do I get started with this API?
Tutorials show how to do something step-by-step. Their primary role is to onboard users
according to the “Reading to learn to do” principle. Include code examples to enable
quick onboarding.

Other ways that help developers to get started are:

• Prototype building options (mock APIs, sandbox environments, test APIs),

• A glossary that explains concepts, and gives informative explanations for objects,
methods, and parameters.

• Software Development Kits (SDKs) that focus on implementations in a specific
programming language.

Tutorials are especially great in the Getting Started stage of the journey. Asking your
developers to write tutorials can help them to celebrate their implementation work and
create valuable resources for specific product use cases. To some extend tutorials

can also help in the evaluation and discover/troubleshoot journey stages.

102

http://ieeexplore.ieee.org/document/44542/?reload=true
http://ieeexplore.ieee.org/document/44542/?reload=true
https://blog.digitalocean.com/get-paid-to-write-tutorials/
https://blog.digitalocean.com/get-paid-to-write-tutorials/
https://blog.digitalocean.com/get-paid-to-write-tutorials/
https://blog.digitalocean.com/get-paid-to-write-tutorials/

3. What do I need to understand about this API?
Conceptual docs explain portal specific concepts. Knowledge of
portal and business specific words - like “dunning”- are not only
important for developers that don’t know your industry, also more
experienced developers less familiar with your product might benefit from a
refresher about certain words in your domain language. There is a good chance
that your organisation has developed a unique semantic meaning for at least a few
words.

4. How do I get X done with this API?
Guides explain how to get something done. They explain how to solve problems via use
cases, recipes or cookbooks. Guides take different formats:

• Topic guides can provide explanations and background information and help
contextualize the topic,

• How-to guides and quickstart guides usually focus on the onboarding process.

103

Guides that provide code snippets or code examples can play an important role in the
onboarding process. In the format of use cases they help evaluate (“Can I get my specific

task done with this product?”) and celebrate interesting implementations. Guides are also
important in the research and develop phase (how can this be done theoretically and

practically?).

https://help.chargify.com/dunning/dunning-intro.html
https://help.chargify.com/dunning/dunning-intro.html
https://www.twilio.com/blog/2017/06/build-a-smart-doorbell-with-twilio-and-android-things.html
https://www.twilio.com/blog/2017/06/build-a-smart-doorbell-with-twilio-and-android-things.html
https://www.twilio.com/blog/2017/06/build-a-smart-doorbell-with-twilio-and-android-things.html
https://www.twilio.com/blog/2017/06/build-a-smart-doorbell-with-twilio-and-android-things.html

5. Do I know all the details of this API?
Reference docs are crucial in the development and troubleshooting stage of the
developer journey: they give detailed instructions on how to build the actual integration.
API reference documentation is so important that API teams often mistakenly equate “API
docs” with the reference documentation of an API. Welcomed as useful extras in reference
documentation are:

• An error dictionary that describes error handling,

• Information on alternative classes, methods, parameters (where appropriate),

• Descriptions,

• Comments,

• Code language selectors,

• Conceptual information.

6. How do I use your API in Y?
SDKs (Software Development Kits that are community driven, handcrafted or generated)
simplify development and help the developers that consume your API to implement best
practices they might not be aware off. They have several functions throughout the
developer’s journey:

• Evaluate (internally): by its nature an SDK needs to implement all or a large part of an
API’s functionality. That is why it is a great opportunity to review and improve on an
API’s design and implementation,

• Getting started: SDKs make it easy to start implementing in a specific programming
language or framework, and help developers to overcome common problematic
areas (like authentication),

• Develop and troubleshoot: Implement API calls in a popular programming language,
so that developers can work in their favorite language or platform,

• Celebrate: Put developers in the spotlight that have created or contributed to an open
source SDK,

104

https://pronovix.com/blog/developer-portal-components-part-6-software-development-kits-sdks
https://pronovix.com/blog/developer-portal-components-part-6-software-development-kits-sdks

• Maintain: SDKs can help keep applications in sync with API changes when used as a
dependency in a project, and SDK metrics provide insight into API usage across the
different developer communities.

7. Is somebody still working on this API?
API release notes (also called changelog) provide notifications about changes in the
documentation. A regularly updated changelog is an important trust signal for your portal.
Blogs can communicate solutions on a regular basis and can help prototype new content.
If you have people to maintain and update your blog regularly, they can be a perfect
content type to incubate new content, publish interesting usage scenarios, communicate
changes and company strategies.

Your blog can play a role in the 6 stages of the developer journey, but our research
showed that they are mostly used to engage users in the discover/research, evaluate

and celebrate journey stages.

105

8. Where do I go when I have a problem with this
API?
Support resources can offer solutions to niche problems and test
documentation accuracy. We make a distinction between staffed support
and peer-to-peer support:

• Staffed support can contain an audience focused FAQ page, a knowledge
base, support pages where you can directly contact the company’s support team,

• Peer-to-peer support is about facilitating communication between users via a
community section, a developer forum or a third-party community page (e.g., on
GitHub).

Support resources mostly address questions related to the getting started and
develop/troubleshoot journey stages.

9. How do I get access to this API?
A fast and easy-to-use API key generator improves developer experience (DX): include a
link in the code examples, sandbox environment, reference documentation and other
pages where your users start implementing the API.

10. Can I afford this API?
Depending on the role and objectives of your visitors, unclear information about your
pricing and business model might become a blocker.

11. Can I trust this API?
Policies (like security, cookie, partner policies) communicate principles that specify the
relation between customer and API supplier. Make this data accessible, findable and easy
to navigate. Sidebar summaries can help to orient your users.

MVP and beyond
Rather than including all the documentation or content types we listed above at once, it is
more important to:

• Examine, but also align the information needs of your company’s key audiences with
your developer portal strategy,

106

https://www.linkedin.com/legal/user-agreement
https://www.linkedin.com/legal/user-agreement

• Adjust content to your users’ expectations logically and efficiently, decide what roles
you want the content types to play in the user journey.

An MVP should focus on the minimal content that your users need to do their job. New
information can be added later to address issues you discover in the developer journey as
you keep evaluating and iterating on your developer experience (DX).

While there are best practices, it is impossible to create a great DX without iterating. Too
much content can sometimes be as much a problem as too little content. This iterative
nature of the whole process is another reason why a docs like code approach has become
so popular in the API community.

Bare minimum MVP
As a bare minimum an MVP should provide the following information and corresponding
minimum content:

107

https://pronovix.com/blog/treat-docs-code
https://pronovix.com/blog/treat-docs-code

First iteration
A first iteration could have a blog to experiment with new content, and could provide
extended support options:

Second iteration
A second iteration could answer all 11 questions and provide exhaustive API
documentation:

108

MVPs and their role in the developer journey
How do the listed MVP and the subsequent iterations address the 6 stages of the
downstream developer journey?

Minimal MVP

First iteration

This developer portal MVP already addresses 5 out of 6 stages in the developer
journey, but with a limited number of documentation types. This kind of portal could
provide a blog, but also support resources, like an FAQ page or a community forum.

(Note that the content types that we added for this iteration are written in italic.)

With this minimal MVP, developer portals only address the discover/research, get
started and develop/troubleshoot stages: users find an answer to what the portal is

about, how they can get started coding and where to find the code.

109

Second iteration

Combine best practices with strategic decisions
Your developer portal is an interface for your API strategy, and, ideally, aligns the API
communication with the documentation. That is why it is crucial to make a thorough study
of your strategic objectives and the personas that will be interacting with your developer
portal.

Would you like to get help developing your portal? Get in touch for a complementary
Developer Portal Architecture Workshop or get a quote for a Content Architecture
Workshop.

An example of how all the questions above can be translated into documentation
types that do not only address all the stages of the developer journey but also focus

on the developers’ different learning approaches more thoroughly. Some
documentation types can appear in more than one stage of the journey. We also

indicated some examples of subcomponents. (Note that the content types that we
added for this iteration are underlined.)

110

https://pronovix.com/contact-us
https://pronovix.com/contact-us

API the Docs
https://pronovix.com/api-docs-amsterdam-2017

https://pronovix.com/api-docs-amsterdam-2017
https://pronovix.com/api-docs-amsterdam-2017

API the Docs Amsterdam: one-day conference about API documentation
and developer portals.

December 4, 2017

• Cristiano Betta: The Seven Deadly Sins of Developer Onboarding

• Alaina Kafkes: Building Beginner-Friendly API Tutorials

• Koen Adolfs: Open banking - Let’s Go Beyond Banking

• Anthony T. Sansone: Writing for Scale: Streamlining API Documentation Maintenance

• Emile Bremmer: Viewing a Developer’s API Journey through Logs

• Jessica Ulyate: From dreadful to Dreddfull: Automated Testing for your API

• Roman Hotsiy: Self-Documented APIs: Myth or Reality?

• Karen Sawrey: Not all Rocket Scientists want to be Brain Surgeons: Lessons Learned
Documenting Cryptography APIs

• Laurent Doguin: Continuous swagness for your APIs

• Nathalie Oostvogels: When the Specification Fails: Documenting Inter-Parameter
Constraints

• Aleksei Akimov: Beyond the Basic Swagger UI: Adyen API Explorer

• Adam Butler: Engineering Great Documentation

Below you find the recordings, slide decks and Laura's notes from API the Docs
Amsterdam.

The next API the Docs event takes place in Paris on April 24, 2018.

112

The Seven Deadly Sins of Developer Onboarding
Cristiano Betta

Developer Experience designer, betta.io

What is DX?
Developer Experience is the journey between a first site visit and a successful API
integration and is driven by tooling (like SDKs) and information (documentation around
the tools).

7 DX sins and 7 tricks to tackle them

The 7 sins

• Too much information

• Information that comes too soon

• Too little, too late information

• Unstructured information

• Unsupportive information

• Incomplete information

• Out of control tooling

The 7 takeaways

• Prevent cognitive overload

• Only ask questions when needed

• Present information with structure

• Present information on time

• Tell the best stories

• Tell the whole story

• Own the whole story

113

https://twitter.com/cbetta
https://twitter.com/cbetta
https://betta.io
https://betta.io

Throughout his whole presentation, Cristiano provides us with real-life examples and lists
solutions that companies like Braintree, GitHub and Amazon apply to tackle DX
problems.

Find a summary of Cristiano's talk on his website.

Cristiano’s slides and presentation.

Building Beginner-Friendly API Tutorials
Alaina Kafkes

Software engineer at Medium

Think like a reader: proofread your tutorials

Write to retain new users. Optimize your docs for novice users via beginner-friendly
tutorials. But how can writers look at content they already know anew? In her talk, Alaina
sums up 7 guidelines with loads of tips to follow and includes practical examples taken
from companies like Clarifai, Twilio and GitHub.

	 1	 Offer a quick start

	 2	 Perform a tech audit

	 3	 Remember your environment

	 4	 Share next steps

	 5	 Anticipate errors

	 6	 Stick to the standard library

	 7	 Use inclusive language

Quality tutorials result in API user growth

Proofreading improves tutorial quality → quality tutorials lead to beginner retention →
retention fosters a healthy community → community augments API user growth.

Alaina’s slides and presentation.

114

https://developers.braintreepayments.com
https://developers.braintreepayments.com
https://github.com
https://github.com
https://aws.amazon.com
https://aws.amazon.com
https://betta.io/blog/2017/11/10/the-seven-sins-of-developer-experience/
https://betta.io/blog/2017/11/10/the-seven-sins-of-developer-experience/
https://speakerdeck.com/cbetta/the-7-deadly-sins-of-developer-experience-devrelcon-tokyo
https://speakerdeck.com/cbetta/the-7-deadly-sins-of-developer-experience-devrelcon-tokyo
https://betta.io/blog/2017/11/10/the-seven-sins-of-developer-experience/
https://betta.io/blog/2017/11/10/the-seven-sins-of-developer-experience/
https://twitter.com/alainakafkes
https://twitter.com/alainakafkes
https://medium.com
https://medium.com
https://clarifai.com/developer/
https://clarifai.com/developer/
https://www.twilio.com/docs/
https://www.twilio.com/docs/
https://github.com
https://github.com
http://slides.com/alainakafkes/beginner-friendly-api-tutorials#/
http://slides.com/alainakafkes/beginner-friendly-api-tutorials#/
https://www.youtube.com/watch?v=OoYNY2y9ziI&feature=youtu.be
https://www.youtube.com/watch?v=OoYNY2y9ziI&feature=youtu.be

Open Banking: Let’s Go Beyond Banking
Koen Adolfs

Product Owner of Open Banking at ABN Amro

ABN AMRO recently launched their API developer portal Pronovix also worked on. We are
all super proud of it!

Koen showed us what it takes in a large financial organization to get such an initiative
supported and realized into a live platform, and how they see their future path as an
aggregator of many sectors. Albeit his presentation is not to be published in its entirety,
we got approval for this one slide.

Writing for Scale: Streamlining API Documentation Maintenance
Anthony Sansone

Senior technical writer at MongoDB

How MongoDB improved its documentation
Unclear documentation can lead to more adoption friction and often means that
organizations with larger deployments face challenges with using your application at scale.
At MongoDB, the API documentation was difficult to use. When trying to update that
documentation, Anthony and colleagues discovered that how they managed those docs
was unsustainable. In trying to help their users scale, they saw that they needed to help
themselves scale the documentation:

• Refactor the docs: what do we have and what do we need to change?

• Refactor the process: do research before revising the process,

• Plan more, execute less,

• Establish own best practices to make the API specification consistent and complete,

• Schedule the work: prioritize what to convert,

115

https://twitter.com/KoenAdolfs
https://twitter.com/KoenAdolfs
https://www.abnamro.com/en/index.html
https://www.abnamro.com/en/index.html
https://developer.abnamro.com
https://developer.abnamro.com
https://twitter.com/atsansone
https://twitter.com/atsansone
https://www.mongodb.com
https://www.mongodb.com
https://www.mongodb.com
https://www.mongodb.com

• Automate the API specification and document how to use
the API.

7 takeaways from MongoDB’s docs process

	 1	 The API specification is not the API docs, only part of it,

	 2	 Automate the API specification,

	 3	 Work with your engineers on revising the API specification,

	 4	 Set and stick to standards,

	 5	 Test your API: use it to be able to explain it on multiple platforms,

	 6	 Plan for incremental rollout,

	 7	 Invest in tutorials: focus on tasks and activities.

Anthony’s slides and presentation.

Viewing a Developer’s API Journey through Logs
Emile Bremmer

Developer at ABN Amro

How to process feedback for ABN Amro’s developer portal
ABN Amro uses the Splunk tool to turn raw data into searchable and visualizable
information.

This enables the team to investigate:

• how developers work with the portal and reach success,

• what the repetitive errors are,

• what can be done to improve efficiency via the documentation or error descriptions,

• example API calls, developer profiling, common mistakes.

116

https://docs.google.com/presentation/d/1z9VFZa2Q7lZpvrGlJrPdwFJ0pSUM8H757BlEE_MvWMM/edit#slide=id.p
https://docs.google.com/presentation/d/1z9VFZa2Q7lZpvrGlJrPdwFJ0pSUM8H757BlEE_MvWMM/edit#slide=id.p
https://www.youtube.com/watch?v=zxP2w_JGh_E&index=2&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://www.youtube.com/watch?v=zxP2w_JGh_E&index=2&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://www.abnamro.com/en/index.html
https://www.abnamro.com/en/index.html
https://developer.abnamro.com
https://developer.abnamro.com
https://www.splunk.com
https://www.splunk.com

Challenges remain. Next steps on the agenda include log data, before/after comparisons,
machine learning opportunities.

Contact Emile directly (emile.bremmer@nl.abnamro.com) with your own feedback.

Emile’s slides and presentation.

From dreadful to Dreddfull: Automated Testing for your API
Jessica Ulyate

Developer and Product Manager

How to test automated API documentation
APIs need good documentation, and to keep your reference docs up-to-date you need to
test them. Dredd is a program that tests API references in specification languages
Swagger/OpenAPI Initiative and API Blueprint.

Jessica talks about how to use Dredd in practice and some of its perks, like:

• using hooks to modify request data,

• testing your docs continuously with CI/CD.

Test docs to make life simpler
• Automated testing the API reference docs is something that - with the right tooling -

even people in not so large organizations, with little financial support can do,

• API reference docs are the basis of your documentation and have the highest
potential for generating errors.

Check out: Keeping documentation honest - an article recommended by Jessica.

Jessica’s slides and presentation.

117

mailto:emile.bremmer@nl.abnamro.com
mailto:emile.bremmer@nl.abnamro.com
https://docs.google.com/a/pronovix.com/nonceSigner?nonce=3jr65g1kc49ee&continue=https://doc-0s-bk-docs.googleusercontent.com/docs/securesc/c6br1isrt9vo1strj558oj3mq1ock2qk/e9d4b1f10gc0gkfgm1rmsig5md5e10lm/1518422400000/03456665992424862642/17428917529983032246/0B8gq9LUdNITtX0cwaHN0aDJndmNvdWhvakdMRjhORVFpN1Fz?e=download&h=18272430558557888379&hash=pna1cqnen9h9ipft0t5kblds53j5s77l
https://docs.google.com/a/pronovix.com/nonceSigner?nonce=3jr65g1kc49ee&continue=https://doc-0s-bk-docs.googleusercontent.com/docs/securesc/c6br1isrt9vo1strj558oj3mq1ock2qk/e9d4b1f10gc0gkfgm1rmsig5md5e10lm/1518422400000/03456665992424862642/17428917529983032246/0B8gq9LUdNITtX0cwaHN0aDJndmNvdWhvakdMRjhORVFpN1Fz?e=download&h=18272430558557888379&hash=pna1cqnen9h9ipft0t5kblds53j5s77l
https://www.youtube.com/watch?v=4Dhdfgc4vGg&index=3&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://www.youtube.com/watch?v=4Dhdfgc4vGg&index=3&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://twitter.com/julyate?lang=en
https://twitter.com/julyate?lang=en
http://dredd.org/en/latest/
http://dredd.org/en/latest/
https://www.openapis.org
https://www.openapis.org
https://apiblueprint.org
https://apiblueprint.org
https://blog.apisyouwonthate.com/keeping-documentation-honest-d9ab5351ddd4
https://blog.apisyouwonthate.com/keeping-documentation-honest-d9ab5351ddd4
https://drive.google.com/a/pronovix.com/uc?export=download&id=17Fy_QvY7Tk-MvwOAKTK6CnDlQplUPZCk
https://drive.google.com/a/pronovix.com/uc?export=download&id=17Fy_QvY7Tk-MvwOAKTK6CnDlQplUPZCk
https://drive.google.com/a/pronovix.com/uc?export=download&id=17Fy_QvY7Tk-MvwOAKTK6CnDlQplUPZCk
https://drive.google.com/a/pronovix.com/uc?export=download&id=17Fy_QvY7Tk-MvwOAKTK6CnDlQplUPZCk

Self-documented APIs: myth or reality?
Roman Hotsiy

Software Engineer, APIs.guru, ReDoc

Self-documented APIs: available solutions
Programmers often struggle writing API documentation that is free-form text based.
There are several products on the market - like Hypermedia/Hateous, OpenAPI Initiative,
and GraphQL - that allow for self-documented API references, but what exactly do they
offer us? In his presentation, Roman provides us with several demos and examples, but
also lists perks and insufficiencies.

Self-documented API documentation as a whole?
The references are only part of the API documentation. As a whole, API documentation
could be categorized into:

• Technical details (How to send a request and extract data from the response?) that
can be self-documented,

• Conceptual documentation (Why do we need this API?), which cannot be
self-documented.

Conclusion: Establish API description formats as a middle ground (write concepts
alongside code) and enable developers and tech writers to collaborate according to docs
like code.

In-between self-documented and written documentation: takeaways
• Reference docs are only part of the API documentation,

• Developers can auto-generate some parts of the API documentation,

• Technical writers are absolutely required to write the other parts,

• Programmers and tech writers should cooperate (check Docs like Code).

Roman’s slides and presentation.

118

https://twitter.com/romanhotsiy
https://twitter.com/romanhotsiy
https://apis.guru
https://apis.guru
https://github.com/Rebilly/ReDoc
https://github.com/Rebilly/ReDoc
https://en.wikipedia.org/wiki/HATEOAS
https://en.wikipedia.org/wiki/HATEOAS
https://www.openapis.org
https://www.openapis.org
http://graphql.org/learn/
http://graphql.org/learn/
https://www.docslikecode.com
https://www.docslikecode.com
https://www.docslikecode.com
https://www.docslikecode.com
https://www.docslikecode.com
https://www.docslikecode.com
https://drive.google.com/a/pronovix.com/uc?export=download&id=0B8gq9LUdNITtdFhIR3VEelVxVl9XNndZbFgzeHRIMThNQTFj
https://drive.google.com/a/pronovix.com/uc?export=download&id=0B8gq9LUdNITtdFhIR3VEelVxVl9XNndZbFgzeHRIMThNQTFj
https://drive.google.com/a/pronovix.com/uc?export=download&id=0B8gq9LUdNITtdFhIR3VEelVxVl9XNndZbFgzeHRIMThNQTFj
https://drive.google.com/a/pronovix.com/uc?export=download&id=0B8gq9LUdNITtdFhIR3VEelVxVl9XNndZbFgzeHRIMThNQTFj

Not all Rocket Scientists want to be Brain Surgeons: Lessons Learned
Documenting Cryptography APIs
Karen Sawrey

Technical writer at Cossack Labs

Cryptography is hard, explaining it is even harder
In her presentation, Karen talks about her job as a technical writer documenting
cryptography APIs and the experience she gained, e.g.,

• Keep the balance between exact-scientific and usable,

• Verify continuously,

• Plan: what’s the least number of actions that gives the best results.

Karen describes what the technical team’s workflow looks like, what tools they use, which
documentation types they provide, what challenges they face.

Master documenting cryptography APIs: tips and tricks
• Nothing is too complicated to explain,

• Choose simple words,

• Think about your documentation users,

• Boldly increase the number of communication channels (get to know your
audiences),

• Don’t be afraid to ask questions.

Karen’s presentation.

119

https://twitter.com/krnswry?lang=en
https://twitter.com/krnswry?lang=en
https://www.cossacklabs.com
https://www.cossacklabs.com
https://www.youtube.com/watch?v=0XFHcG1h_MA&index=6&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://www.youtube.com/watch?v=0XFHcG1h_MA&index=6&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS

Continuous Swagness for your APIs
Laurent Doguin

Head of Developer Relations at Clever Cloud

Continuous integration and delivery
Laurent demo-ed us how they use Swagger to generate a website for their APIs'
documentation and specific clients for each language they support. Each time they
update the spec they test it, update the website, build, test and deploy the new Clients
libraries automatically. He showed us (live demo) how to set everything up from scratch
thanks to Jenkins, Artifactory and Clever Cloud.

Laurent’s tips:
• The production has to be perfect,

• There is one process: build, then register, and live without data,

• Keep the more updated version,

• Statelessness is the key: create a factory of instances.

Laurent’s presentation.

When the Specification Fails: Documenting Inter-Parameter Constraints
Nathalie Oostvogels

PhD student at the Vrije Universiteit Brussel

Inter-parameter constraints are common in web API specifications
In web API specifications, constraints come along with parameters. You need to satisfy
every constraint for a request to succeed. API specification languages (API Blueprint,
RAML, Swagger) and their tools help to ease that process, but do not yet provide a
solution to express constraints across parameters (inter-parameter constraints).

120

https://twitter.com/ldoguin
https://twitter.com/ldoguin
https://www.clever-cloud.com
https://www.clever-cloud.com
https://swagger.io
https://swagger.io
https://jenkins.io
https://jenkins.io
https://jfrog.com/artifactory/
https://jfrog.com/artifactory/
https://www.clever-cloud.com
https://www.clever-cloud.com
https://www.youtube.com/watch?v=9WNBE_KjgcU&index=7&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://www.youtube.com/watch?v=9WNBE_KjgcU&index=7&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://twitter.com/noostvog?lang=en
https://twitter.com/noostvog?lang=en
https://cris.vub.be/en/searchall.html?searchall=Oostvogels
https://cris.vub.be/en/searchall.html?searchall=Oostvogels
https://apiblueprint.org
https://apiblueprint.org
https://raml.org
https://raml.org
https://swagger.io
https://swagger.io

Nathalie researched popular web APIs (like Twitter, Google Maps, YouTube, Facebook) and
found three types of inter-parameter constraints:

• Exclusive constraints,

• Dependent constraints,

• Group constraints.

A new specification language to describe inter-parameter constraints
The speaker shows us how JSON Schema (Swagger/OpenAPI Initiative) features do not
allow for an efficient description of inter-parameter constraints.

Nathalie started working on an extension of the OpenAPI Initiative specification
language that support inter-parameter constraints. She also recommends the usage of
a truth table.

Consequently, documentation tools should be extended:

• render the inter-parameter constraints as a separate block in the docs

• indicate that field is part of inter-parameter constraint

To end, Nathalie provides us with a guide to recognize inter-parameter constraints in
API documentation.

Natalie’s slides and presentations.

Aleksei Akimov - Beyond the Basic Swagger UI: Adyen API Explorer
Aleksei Akimov

Technical writer at Adyen

From API to documentation
Adyen’s rapid growth provides challenges concerning documentation. For their API
references, they chose the Swagger tool (to implement the OpenAPI specification format -
as Aleksei explains the semantic differences). The basic Swagger UI however, the speaker

121

https://twitter.com/?lang=en
https://twitter.com/?lang=en
https://www.google.hu/maps?source=tldsi&hl=en
https://www.google.hu/maps?source=tldsi&hl=en
https://www.youtube.com
https://www.youtube.com
https://www.facebook.com
https://www.facebook.com
http://json-schema.org
http://json-schema.org
http://soft.vub.ac.be/~noostvog/slides/APITheDocs.pdf
http://soft.vub.ac.be/~noostvog/slides/APITheDocs.pdf
https://www.youtube.com/watch?v=Nh2-Z57xJWM&index=8&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://www.youtube.com/watch?v=Nh2-Z57xJWM&index=8&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://twitter.com/AlexeyAkimov
https://twitter.com/AlexeyAkimov
https://www.adyen.com
https://www.adyen.com
https://swagger.io
https://swagger.io

indicates, lacked an effective layout and provides problems with nested structures. How
could Adyen go beyond?

Reimagining the Swagger UI: from specification to documentation
• One user persona can wear different hats, and act e.g. as the learning developer or

the coding developer,

• Work in streams: have team members with different professional profiles,

• Results: Among Adyen’s API Explorer’s first wins are support for multiple specs,
adaptive layout, clean structure for nested objects, the multiple code examples.

Tips and tricks after building Adyen’s API Explorer
• Let technical writers and developers collaborate on the same content,

• Use the latest version of the OpenAPI,

• Use markdown,

• Integrate swagger in CI,

• OpenAPI supports custom annotations,

• Launch fast and iterate (be agile).

Aleksei’s slides and presentation.

DocOps - Engineering Great Documentation
Adam Butler

Technical Lead of Nexmo Developer

DocOps: Engineering to help maintain the documentation
Adam talked about the open-source platform and tools they built when developing Nexmo
Developer, for writing rich documentation collaboratively with ease. He talked about how
they tackled problems concerning documentation requirements and met their goals.

• How can people contribute on docs while keeping the quality high?

122

https://docs.adyen.com/api-explorer/#/Payment/v30/authorise
https://docs.adyen.com/api-explorer/#/Payment/v30/authorise
https://www.slideshare.net/AlexeyAkimov2/beyond-the-basic-swagger-ui-adyen-api-explorer-83807430
https://www.slideshare.net/AlexeyAkimov2/beyond-the-basic-swagger-ui-adyen-api-explorer-83807430
https://www.youtube.com/watch?v=UWBlrs6LLYw&index=9&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://www.youtube.com/watch?v=UWBlrs6LLYw&index=9&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://twitter.com/labfoo
https://twitter.com/labfoo
https://developer.nexmo.com
https://developer.nexmo.com
https://developer.nexmo.com
https://developer.nexmo.com
https://developer.nexmo.com
https://developer.nexmo.com

• Think like an engineer: Build tools and processes that
give the docs back to the contributing people (engineers,
product owners, tech writers, customers, support, …).

Nexmo Developer features

• Open source

• Tooling: Ruby + Rails + Nexmo flavoured markdown

• Contribution guides

• Automation

• Docs like Code

Read Adam’s article on Extending Markdown with middleware.

Adam’s slides and presentation.

Original recording of the conference by Kristof Van Tomme, Creative Commons Attribution
Share-Alike License v3.0

123

https://developer.nexmo.com
https://developer.nexmo.com
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
http://rubyonrails.org
http://rubyonrails.org
https://developer.nexmo.com/contribute/overview
https://developer.nexmo.com/contribute/overview
https://www.docslikecode.com
https://www.docslikecode.com
https://lab.io/articles/2017/02/12/extending-markdown-with-middleware/
https://lab.io/articles/2017/02/12/extending-markdown-with-middleware/
https://www.slideshare.net/labfoo/docops-engineering-great-docs/labfoo/docops-engineering-great-docs
https://www.slideshare.net/labfoo/docops-engineering-great-docs/labfoo/docops-engineering-great-docs
https://www.youtube.com/watch?v=N98JVdNmynY&index=10&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://www.youtube.com/watch?v=N98JVdNmynY&index=10&list=PLCog6XCmmzvDWFYjWsdVPLdfcXTH2OGNS
https://twitter.com/kvantomme
https://twitter.com/kvantomme

TOOLCHAINS 
DOCS AS CODE

http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b

Case Study: Switching Tools to
Docs-as-Code

Tom Johnson
http://idratherbewriting.com/learnapidoc/pubapis_switching_to_docs_as_code.html

http://idratherbewriting.com/learnapidoc/pubapis_switching_to_docs_as_code.html
http://idratherbewriting.com/learnapidoc/pubapis_switching_to_docs_as_code.html

For an overview of the docs-as-code approach, see
Docs-as-code tools. In this article, I describe the challenges we
faced in implementing a docs-as-code approach within a tech writing
group at a large company.

Changing any documentation tooling at a company can be a huge undertaking.
Depending on the amount of legacy content to convert, the number of writers to
train, the restrictions and processes you have to work against in your corporate
environment and more, it can require an immense amount of time and effort to switch
tools from the status quo to docs-as-code.

Additionally, you will likely need to make this change outside your normal documentation
work, and you’ll probably need to develop the new system while still updating and
publishing content in the old system Essentially, this means you’ll be laying down a new
highway while simultaneously driving down it.

Previous processes
Previously, our team published content through a content management system called
Hippo (by Bloomreach). Hippo is similar to WordPress or Drupal but is Java-based rather
than PHP-based (which made it attractive to a Java-centric enterprise that restricted PHP
but still needed a CMS solution for publishing).

To publish a page of documentation, tech writers had to create a new page in the Hippo
CMS and then paste in the HTML for the page (or try to use the WYSIWYG editor in the
Hippo CMS). If you had 50 pages of documentation to publish, you would need to paste
the HTML into each CMS page one by one. Originally, many writers would use tools such
as Pandoc to convert their content to HTML and then paste it into the Hippo CMS. This
copy-and-paste approach was tedious, prone to error, and primitive.

When I started, I championed using Jekyll to generate and manage the HTML, and I
started storing the Jekyll projects in internal Git repositories. I also created a layout in
Jekyll that was designed specifically for Hippo publishing. The layout included a
documentation-specific sidebar (previously absent in Hippo on a granular level) to

126

http://idratherbewriting.com/learnapidoc/pubapis_docs_as_code.html
http://idratherbewriting.com/learnapidoc/pubapis_docs_as_code.html
https://www.bloomreach.com/en/products/experience/hippo-cms
https://www.bloomreach.com/en/products/experience/hippo-cms
https://pandoc.org
https://pandoc.org

navigate all the content in a particular set of documentation. This Jekyll layout included a
number of styles and scripts to override settings in the CMS.

Despite this innovation, our publishing process still involved pasting the generated HTML
(after building Jekyll) page by page into the CMS. Thus, we were halfway with our
docs-as-code approach and still had room to go. One of the tenets of docs-as-code is to
build your output directly from the server (called “continuous deployment”). In other
words, you incorporate the publishing logic on the server rather than running the
publishing process from your local computer.

This last step, publishing directly from the server, was difficult because another
engineering group was responsible for the website and server, and we couldn’t just rip
Hippo out and start uploading the Jekyll-generated files onto a web server ourselves. It
would take another year or more before the engineering team had the bandwidth for the
project. Once it started, the project was a wild ride of mismatched expectations and
assumptions. But in the end, we succeeded.

Most of the lessons learned here are about this process, specifically how we transitioned
to building Jekyll directly from an internal Git repo, the decisions we made and the
reasoning behind those decisions, the compromises and other changes of direction, and
so on. My purpose here is to share lessons learned so that other writers embarking on
similar endeavors can benefit from understanding what might be on the road ahead.

Advantages of integrating into a larger system
Why did we want to move to docs as code in the first place? At most large companies,
there are plenty of robust, internally developed tools that tech writers can take advantage
of. The docs-as-code approach would allow us to integrate into this robust enterprise
infrastructure that developers had already created.

Documentation tools are often independent, standalone tools that offer complete
functionality (such as version control, search, and deployment) within their own system.
But these systems are often a black box, meaning, you can’t really open them up and
integrate them into another process or system. With the docs-as-code approach, we had
the flexibility to adapt our process to fully integrate within the company’s infrastructure and

127

website deployment process. Some of this infrastructure we
wanted to hook into included the following:

• Internal test environments (a gamma environment separate from
production)

• Authentication for specific pages based on account profiles

• Search and indexing

• Website templating (primarily a complex header and footer)

• Robust analytics

• Secure servers in order to satisfy Information Security policies with the corporate
domain

• Media CDN for distributing images

• Git repositories and GUI for managing code

• Build pipelines and a build management system

All we really needed to do was to generate out the body HTML along with the sidebar and
make it available for the existing infrastructure to consume. The engineering team that
supported the website already had a process in place for managing and deploying content
on the site. We wanted to use similar processes rather than coming up with an entirely
different approach.

End solution
In the end, here’s the solution we implemented. We stored our Jekyll project in an internal
Git repository — the same farm of Git repositories other engineers used for nearly every
software project, and which connected into a build management system. After we pushed
our Jekyll doc content to the master branch of the Git repository, a build pipeline would
kick off and build the Jekyll project directly from the server (similar to GitHub Pages).

Our Jekyll layout omitted any header or footer in the theme. The built HTML pages were
then pulled into an S3 bucket in AWS through an ingestion tool (which would check for
titles, descriptions, and unique permalinks in the HTML). This bucket acted as a flat-file
database for storing content. Our website would make calls to the content in S3 based on

128

https://pages.github.com
https://pages.github.com

permalink values in the HTML to pull the content into a larger website template that
included the header and footer.

The build process from the Git repo to the deployed website took about 10 minutes, but
tech writers didn’t need to do anything during that time. After you typed a few commands
in your terminal (merging with the gamma or production branch locally and then pushing
out the update to origin), the deployment process kicked off and ran all by itself.

The first day in launching our new system, a team had to publish 40 new pages of
documentation. Had we still been in Hippo, this would have taken several hours. Even
more painful, their release timeframe was an early morning, pre-dawn hour, so the team
would have had to publish 40 pages in Hippo CMS at around 4 am to 6 am, copying and
pasting the HTML frantically to meet the release push and hoping they didn’t screw
anything up.

Instead, with the new process, the writer just merged her development branch into the
production branch and pushed the update to the repo. Ten minutes later, all 40 pages
were live on the site. She was floored! We knew this was the beginning of a new chapter in
our team’s processes. We felt like a huge burden had been lifted off our shoulders, and the
tech writers loved the new system.

Challenges we faced
I’ve summarized the success and overall approach, but there were a lot of questions and
hurdles in developing the process. I’ll detail these main challenges in the following
sections.

Inability to do it ourselves
The biggest challenge, ironically, was probably with myself — dealing with my own
perfectionist, controlling tendencies to do everything on my own, just how I wanted. (This
is probably both my biggest weakness and strength as a technical writer.) It’s hard for me
to relinquish control and have another team do the work. We had to wait about a year for
the overworked engineering team’s schedule to clear up so they would have the
bandwidth to do the project.

129

During this wait time, we refined our Jekyll theme and
process, ramped up on our Git skills, and migrated all of the
content out of the old CMS into kramdown Markdown. Even so, as
project timelines kept getting delayed and pushed out, we weren’t sure if
the engineering team’s bandwidth would ever lighten up. I wanted to jump
ship and just deploy everything myself through the S3_website plugin on AWS
S3.

But as I researched domain policies, server requirements, and other corporate standards
and workflows, I realized that a do-it-myself approach wouldn’t work (unless I possessed
a lot more engineering knowledge than I currently did). Given our corporate domain,
security policies required us to host the content on an internal tier 1 server, which had to
pass security requirements and other standards. It became clear that this would involve a
lot more engineering knowledge and time than I had, as well as maintenance time if I
managed the server post-release, so we had to wait.

We wanted to get this right because we probably wouldn’t get bandwidth from the
engineering team again for a few years. In the end, waiting turned out to be the right
approach.

Understanding each other
When we did finally begin the project and started working with the engineering team,
another challenge was in understanding each other. The engineering team (the ones
implementing the server build pipeline and workflow) didn’t understand our Jekyll
authoring process and needs.

Conversely, we didn’t understand the engineer’s world well either. To me, it seemed all
they needed to do was upload HTML files to a web server, which seemed a simple task. I
felt they were overcomplicating the process with unnecessary workflows and layouts. And
what was the deal with storing content in S3 and doing dynamic lookups based on
matching permalinks? But whereas I had in mind a doghouse, they had in mind a
skyscraper. So their processes were probably more or less scaled and scoped to the
business needs and requirements.

130

https://kramdown.gettalong.org
https://kramdown.gettalong.org
https://github.com/laurilehmijoki/s3_website
https://github.com/laurilehmijoki/s3_website
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

Still, we lived in different worlds, and we had to constantly communicate about what each
other needed. It didn’t help that we were located in different states and had to interact
virtually, often through chat and email.

Figuring out repo size
Probably the main challenge was to figure out the correct size for the documentation
repos. Across our teams, we had 30 different products, each with their doc navigation and
content. Was it better to store each product in its own repo, or to store all products in one
giant repo? I flipped my thinking on this several times.

Storing content in multiple repos led to quick build times, reduced visual clutter, resulted in
fewer merge conflicts, didn’t introduce warnings about repo sizes, and had other benefits
with autonomy.

On the other hand, storing all content in one repo simplified content re-use, made link
management and validation easier, reduced maintenance efforts, and more. Most of all, it
made it easier to update the theme in a single place rather than duplicating theme file
updates across multiple repos.

Originally, our team started out storing content in separate repos. When I had updates to
the Jekyll theme, I thought I could simply explain what files needed to be modified, and
each tech writer would make the update to their theme’s files. This turned out not to really
work — tech writers didn’t like making updates to theme files. The Jekyll projects became
out of date, and then when someone experienced an issue, I had no idea what version of
the theme they were on.

I then championed consolidating all content in the same repo. We migrated all of these
separate, autonomous repos into one master repo. This worked well for making theme
updates. But soon the long build times (1-2 minutes for each build) became painful. We
also ran into size warnings in our repo (images and other binary files such as Word docs
were included in the repos). Sometimes merge conflicts happened.

The long build times were so annoying, we decided to switch back to individual repos.
There’s nothing worse than waiting 2 minutes for your project to build, and I didn’t want

131

the other tech writers to hate Jekyll like they did Hippo. The
lightning-fast auto-regenerating build time with Jekyll is part of its
magic.

Creative solutions for theme distribution across repos
I came up with several creative ways to push the theme files out to multiple
small repos in a semi-automated way. My first solution was to distribute the theme
through RubyGems, which is Jekyll’s official solution for theming. I created a theme
gem, open-sourced it and the theme (see Jekyll Doc Project), and practiced the workflow
to push out updates to the theme gem and pull them into each repo.

It worked well (just as designed). However, it turns out our build management system (an
engineering tool used to build outputs or other artifacts from code repositories) couldn’t
build Jekyll from the server using Bundler, which is what RubyGems required. (Bundler is a
tool that automatically gets the right gems for your Jekyll project based on the Jekyll
version you are using. Without Bundler, each writer just installs the jekyll gem locally and
builds the Jekyll project based on that gem version.

My understanding of the build management system was limited, so I had to rely on
engineers for their assessment. Ultimately, we had to scrap using Bundler and just build
using jekyll serve. I still had the problem of distributing the same theme across
multiple repos.

My second attempt was to distribute the theme through Git submodules. This involved
storing the theme in its own Git repo that other Git repos would pull in. However, our build
management system couldn’t support Git submodules either, it turned out.

I then came up with a way to distribute the theme through Git subtrees. Git subtrees
worked in our build system (although the commands were strange), and it preserved the
short build times. However, when the engineering team started counting up all the
separate build pipelines they’d have to create and maintain for each of these separate
repos (around 30), they said this wasn’t a good idea from a maintenance point of view.

132

https://rubygems.org
https://rubygems.org
https://jekyllrb.com/docs/themes/
https://jekyllrb.com/docs/themes/
https://github.com/amzn/jekyll-doc-project
https://github.com/amzn/jekyll-doc-project
http://bundler.io
http://bundler.io
https://rubygems.org/gems/jekyll/versions/3.3.1
https://rubygems.org/gems/jekyll/versions/3.3.1
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.atlassian.com/blog/git/alternatives-to-git-submodule-git-subtree
https://www.atlassian.com/blog/git/alternatives-to-git-submodule-git-subtree

Not understanding all the work involved around building publishing pipelines for each Git
repo, there was quite a bit of frustration here. It seemed like I was going out of my way to
accommodate engineering limitations, and I wasn’t sure if they were modifying any of their
processes to accommodate us. But eventually, we settled on two Git repos and two
pipelines. We had to reconsolidate all of our separate repos back into two repos. You can
probably guess that moving around all of this content, splitting it out into separate repos
and then re-integrating it back into consolidated repos, etc., wasn’t a task that the writers
welcomed.

There was a lot of content and repo adjustment, but in the end, two large repos was the
right decision. In fact, in retrospect, I wouldn’t have minded just having one repo for
everything.

Each repo had its own Jekyll project. If I had an update to any theme files (e.g., layouts or
includes), I copied the update manually into both repos. This was easier than trying to
devise an automated method. It also allowed me to test updates in one repo before rolling
them out to the other repo. To reduce the slow build times, I created project-specific
config files that would cascade with the default configuration file and build only one
directory rather than all of them. This reduced the build time to the normal lightning-fast
times of less than 5 seconds.

More specifically, to reduce the build times, we created a project-specific configuration file
(e.g., acme-config.yml) that sets, through the defaults, all the directories to publish:
false but lists one particular directory (the one with content you’re working on) as
publish: true. Then to build Jekyll, you cascade the config files like this:

The config files on the right overwrite the config files on the left. It works quite well.

Also, although at the time I grumbled about having to consolidate all content into two
repos, I realized it was the right decision. Recognizing this, my respect and trust in the
engineering team’s judgment grew considerably. In the future, I started to treat the

133

jekyll serve --config _config.yml,acme-config.yml

engineers’ recommendations and advice about various
processes with much more respect. I didn’t assume they
misunderstood our authoring needs and requirements so much, and
instead followed their direction more readily.Ensuring everyone builds
with the same version of Jekyll

Another challenge was ensuring everyone built the project using the same version
of Jekyll. Normally, you include a Gemfile in your Jekyll project that specifies the
version of Jekyll you’re using, and then everyone who builds the project with this Gemfile
runs Bundler to make sure the project executes with this version of Jekyll. However, since
our build pipeline had trouble running Bundler, we couldn’t ensure that everyone was
running the same version of Jekyll.

Ideally, you want everyone on the team using the same version of Jekyll to build their
projects, and you want this version to match the version of Jekyll used on the server.
Otherwise, Jekyll might not build the same way. You don’t want to later discover that some
lists don’t render correctly or that some code samples don’t highlight correctly because of
a mismatch of gems. Without Bundler, everyone’s version of Jekyll probably differed.
Additionally, the latest supported version of Jekyll in the build management system was an
older version of Jekyll (at the time, it was 3.4.3, which had a dependency on an earlier
version of Liquid that was considerably slower in building out the Jekyll site).

The engineers finally upgraded to Jekyll 3.5.2, which allowed us to leverage Liquid 4.0.
This reduced the build time from about 5 minutes to 1.5 minutes. Still, Jekyll 3.5.2 had a
dependency on an older version of the rouge gem, which was giving us issues with some
code syntax highlighting for JSON. The process of updating the gem within the build
management system was foreign territory to me, and it was also a new process for the
engineers.

To keep everyone in sync, we asked that each writer check their version of Jekyll and
manually upgrade to the latest version. This turned out not to be much of an issue since
there wasn’t much of a difference from one Jekyll gem version to the next (at least for the
features we were using).

134

https://rubygems.org/gems/rouge
https://rubygems.org/gems/rouge

Ultimately, I learned that it’s one thing to update all the Jekyll gems and other
dependencies on your own machine, but it’s an entirely different effort to update these
gems within a build management server in an engineering environment you don’t own.

Figuring out translation workflows
Figuring out the right process for translation was also difficult. We started out translating
the Markdown source. Our translation vendor affirmed they could handle Markdown as a
source format, and we did tests to confirm it. However, after a few translation projects, it
turned out that they couldn’t handle content that mixed Markdown with HTML, such as a
Markdown document with an HTML table (and we almost always used HTML tables in
Markdown). The vendors would count each HTML element as a Markdown entity, which
would balloon the cost estimates.

Further, the number of translation vendors that could handle Markdown was limited, which
created risks around the vendors that could even be used. For example, our localization
managers often wanted to work with translation agencies in their own time zones. But if
we were reliant on a particular vendor for their ability to process Markdown, we restricted
our flexibility with vendors. If we wanted to scale across engineering, we couldn’t force
every team to use the same translation vendors, which might not be available in the right
time zones. Eventually, we decided to revert to sending only HTML to vendors.

However, if we sent only the HTML output from Jekyll to vendors, it made it difficult to
apply updates. With Jekyll (and most static site generators), your sidebar and layout are
packaged into each of your individual doc pages. Assuming that you’re just working with
the HTML output (not the Markdown source), if you have to add a new page to your
sidebar, or update any aspect of your layout, you would need to edit each individual HTML
file instance to make those updates across the documentation. That wasn’t something we
wanted to do.

In the end, the process we developed for handling translation content involved manually
inserting the translated HTML into pages in the Jekyll project and then having these pages
build into the output like the other Markdown pages. We later evolved the process to
create container files that provided the needed frontmatter metadata but which used

135

includes to pull the body content from the returned HTML file
supplied by the translation vendors. It was a bit of manual labor,
but acceptable given that we didn’t route content through translation
all that often.

The URLs for translated content also needed to have a different baseurl.
Rather than outputting content in the /docs/ folder, translated content needed to
be output into /ja/docs/ (for Japanese) or /de/docs/ (for German). However, a
single Jekyll project can have only one baseurl value as defined in the default
_config.yml file. I had this baseurl value automated in a number of places in the theme.

To account for the new baseurl, I had to incorporate a number of hacks to prepend
language prefixes into this path and adjust the permalink settings in each translated
sidebar to build the file into the right ja or de directory in the output. It was confusing and
if something breaks in the future, it will take me a while to unravel the logic I implemented.

Overall, translation remains one of the trickier aspects to handle with static site
generators, as these tools are rarely designed with translation in mind. But we made it
work. (Another challenge with translation was how to handle partially translated doc sets
— I won’t even get into this here.)

Overall, given the extreme flexibility and open nature of static site generators, we were
able to adapt to the translation requirements and needs on the site.

Other challenges
There were a handful of other challenges worth mentioning (but not worth full development
as in the previous sections). I’ll briefly list them here so you know what you might be
getting into when adopting a docs-as-code approach.

Moving content out of the legacy CMS
We probably had about 1,500 pages of documentation between our 10 writers. Moving all
of this content out of the old CMS was challenging. Additionally, we decided to leave
some deprecated content in the CMS, as it wasn’t worth migrating. Creating redirect
scripts that would correctly re-route all the content to the new URLs (especially with

136

changed file names) while not routing away from the deprecated CMS pages was
challenging. Engineers wanted to handle these redirects at the server level, but they
needed a list of old URLs and new URLs.

To programmatically create redirect entries for all the pages, I created a script that iterated
throughout each doc sidebar and generated out a list of old and new URLs in a JSON
format that the engineering team could incorporate into their redirect tool. It worked pretty
well, but migrating the URLs through comprehensive redirects required more analysis and
work.

Implementing new processes while still supporting the old
While our new process was in development (and not yet rolled out), we had to continue
supporting the ability for writers to generate outputs for the old system (pasting content
page by page into the legacy Hippo CMS). Any change we made had to also include the
older logic and layouts to support the older system. This was particularly difficult with
translation content since it required such a different workflow. Being able to migrate our
content into a new system while continuing to publish in the older system, without making
updates in both places, was a testament to the flexibility of Jekyll. We created separate
layouts and configuration files in Jekyll to facilitate these needs.

One of the biggest hacks was with links. Hippo CMS required links to be absolute links if
pasting HTML directly into the code view rather than using the WYSIWYG editor (insane as
this sounds, it’s true). We created a script in our Jekyll project to populate links with either
absolute or relative URLs based on the publishing targets. It was a non-standard way of
doing links (essentially we treated them as variables whose value was defined through
properties in the config file). It worked. Again, Jekyll’s flexibility allowed us to engineer the
needed solution.

Constantly changing the processes for documentation
We had to constantly change the processes for documentation to fit what did or did not
work with the engineering processes and environment. For example, git submodules,
subtrees, small repos, large repos, frontmatter, file names, translation processes, etc., all
fluctuated as we finalized the process and worked around issues or incompatibilities.

137

Each change created some frustration and stress for the tech
writers, who felt that processes were changing too much and
didn’t like to hear about updates they would need to make or learn.
And yet, it was hard to know the end from the beginning, especially when
working with unknowns around engineering constraints and requirements.
Knowing that the processes we were laying down now would likely be cemented
into the pipeline build and workflow for long into the distant future was stressful.

I wanted to make sure we got things right, which might mean adjusting our process, but I
didn’t want to do that too much adjustment because each time there was a change, it
weakened the confidence among the other tech writers about our direction and expertise
about what we were doing.

During one meeting, I somewhat whimsically mentioned that updating our permalink path
wouldn’t be a bad idea (to have hierarchy in the URLs). One of the tech writers noted that
she was already under the gun to meet deadlines for four separate projects and wasn’t
inclined to update all the permalinks for each page in these projects. After that, I was
cautious about introducing any change without having an extremely compelling reason for
it.

The experience made me realize that the majority of tech writers don’t like to tinker around
with tools or experiment with new authoring approaches. They’ve learned a way to write
and publish content, and they resent it when you modify that process. It creates an
extreme amount of stress in their lives. And yet, I kind of liked to try new approaches and
techniques.

In the the engineering camp, I also took some flak for changing directions too frequently. I
had to change directions to try to match the obscure engineering requirements. In
retrospect, it would have helped if I had visited the engineers for a week to learn their
workflow and infrastructure in depth.

Styling the tech docs within a larger site
Another challenge was with tech doc styles. The engineering team didn’t have resources
to handle our tech doc styling, so I ended up creating a stylesheet (3,000 lines long) with

138

all CSS namespaced to a class of docs (for example, .docs p, .docs ul, etc). I
implemented namespacing to ensure the styles wouldn’t alter other components of the
site. Much of this CSS I simply copied from Bootstrap. The engineers pretty much
incorporated this stylesheet into their other styles for the website.

With JavaScript, however, we ran into namespace collisions and had to wrap our jQuery
functions in a special name to avoid conflicts (the conflicts would end up breaking the
initialization of some jQuery scripts). These namespace collisions with the scripts weren’t
apparent locally and were only visible after deploying on the server, so the test
environment constantly flipped between breaking or not breaking the sidebar (which used
jQuery). As a result, seeing broken components created a sense of panic from the
engineers and dread among the tech writers.

The engineers weren’t happy that we had the ability to break the display of content with
our layout code in Jekyll. At the same time, we wanted the ability to push out content that
relied on jQuery or other scripts. In the end, we got it to work, and the returned stability
calmed down the writers.

Transitioning to a git-based workflow
While it may seem like Jekyll was the authoring tool to learn, actually the greater challenge
was becoming familiar with Git-based workflows for doc content. This required some
learning and familiarity with the command line and version control workflows.

Some writers already had a background with Git, while others had to learn it. Although we
all ended up learning the Git commands, I’m not sure everyone actually used the same
processes for pulling, pushing, and merging content (there’s a lot of ways to do similar
tasks).

There were plenty of times where someone accidentally merged a development branch
into the master or found that two branches wouldn’t merge, or they had to remove content
from the master and put it back into development, etc. Figuring out the right process in Git
is not a trivial undertaking. Even now, I’ll occasionally find a formatting error because Git’s
conflict markers >>>>>>> and <<<<<<< find their way into the content, presumably from
a merge gone wrong. We don’t have any validation scripts (yet) that look for marker stubs

139

https://getbootstrap.com
https://getbootstrap.com

like this, so it’s a bit disheartening to suddenly come across
them.

Striking a balance between simplicity and robustness in doc
tooling.
Overall, we had to support a nearly impossible requirement in accommodating
less technical contributors (such as project managers or administrators outside our
team). The requirement was to keep doc processes simple enough for non-technical
people to make updates (similar to how they did in the old CMS), while also providing
enough robustness in the doc tooling to satisfy the needs of tech writers, who often need
to single-source content, implement variables, re-use snippets, output to PDF, and more.

In the end, given that our main audience and contributors were developers, we favored
tools and workflows that developers would be familiar with. To contribute substantially in
the docs, we decided that you would have to understand, to some extent, Git, Markdown,
and Jekyll. For non-technical users, we directed them to a GUI (similar to GitHub’s GUI)
they could interact with to make edits in the repository. Then we would merge in and
deploy their changes.

However, even the less technical users eventually learned to clone the project and push
their updates into a development branch using the command line. It seems that editing via
the GUI is rarely workable as a long-term solution.

Building a system that scales
Although we were using open source tools, our solution had to be able to scale in an
enterprise way. Because the content used Markdown as the format, anyone could easily
learn it. And because we used standard Git processes and tooling, engineers can more
easily plug into the system.

We already had some engineering teams interacting in the repo. Our goal was to empower
lots of engineering teams with the ability to plug into this system and begin authoring.
Ideally, we could have dozens of different engineering groups owning and contributing
content, with the tech writers acting more like facilitators and editors.

140

Also significant is that no licenses or seats were required to scale out the authoring. A
writer just uses Atom editor (or another IDE). The writer would open up the project and
work with the text, treating docs like code.

Within the first few weeks of launching our system, we found that engineers liked to
contribute updates using the same code review tools they used with software projects.
This simplified the editing workflow. But it also created more learning on our part, because
it meant we would need to learn these code review tools, how to push to the code review
system, how to merge updates from the reviews, and so forth.

Additionally, empowering these other groups to author required us to create extensive
instructions, which was an entire documentation project in itself. I created around 30+
topics in our guide that explained everything from setting up a new project to publishing
from the command line using Git to creating PDFs, navtabs, inserting tooltips and more.
Given that this documentation was used internally only and wasn’t documentation
consumed externally, there wasn’t a huge value or time allotment for creating it. Yet it
consumed a lot of time. Making good documentation is hard, and given the questions and
onboarding challenges, I realized just how much the content needed to be simplified and
easier to follow.

Conclusion
Almost everyone on the team was happy about the way our doc solution turned out. Of
course, there are always areas for improvement, but the existing solution was head and
shoulders above the previous processes. Perhaps most importantly, Jekyll gave us an
incredible degree of flexibility to create and adapt to our needs. It was a solution we could
build on and make fit our infrastructure and requirements.

I outlined the challenges here to reinforce the fact that implementing docs-as-code is no
small undertaking. It doesn’t have to be an endeavor that takes months, but at a large
company, if you’re integrating with engineering infrastructure and building out a process
that will scale and grow, it can require a decent amount of engineering expertise and
effort.

141

If you’re implementing docs-as-code at a small company, you can simplify processes and
use a system that meets your needs. For example, you could simply use GitHub Pages, or
use the S3_website plugin to publish on AWS S3, or better yet, use a continuous
deployment platform like CloudCannon or Netlify. (I explore these tools in more depth
here: Publishing tool options for developer docs.) I might have opted for either of these
approaches if allowed and if we didn’t have an engineering support team to implement the
workflow I described.

142

https://pages.github.com
https://pages.github.com
https://github.com/laurilehmijoki/s3_website
https://github.com/laurilehmijoki/s3_website
https://cloudcannon.com
https://cloudcannon.com
https://www.netlify.com
https://www.netlify.com
http://idratherbewriting.com/learnapidoc/pubapis_docs_as_code_tool_options.html
http://idratherbewriting.com/learnapidoc/pubapis_docs_as_code_tool_options.html

Building a Developer Portal?
Here are Four Key Questions to
Answer First

István Zoltán Szabó & Kristof Van Tomme
https://apigee.com/about/blog/api-technology/building-developer-portal

https://apigee.com/about/blog/api-technology/building-developer-portal
https://apigee.com/about/blog/api-technology/building-developer-portal

In collaboration with Apigee, for about a year now we at Pronovix have been
custom-fitting the default Drupal-based Apigee developer portal to Apigee customers'
individual requirements.

We’ve noticed some patterns emerging regarding the types of developer portals that
organizations need and how they can address those needs using Apigee’s developer
portal.

We have been experimenting with a series of targeting questions to help our customers
think through what kind of portal they actually need, and what kind of features it should
incorporate.

Thanks to that effort, we’ve identified the four most important questions—the ones that
show the common set of requirements our customers usually request. The answers to
these questions help identify the purpose of the developer portal and help to facilitate the
decision-making process.

Which audience does your developer portal target?
The answer to this question defines whether your portal will be open to the wider public or
only to a certain group of people (your partners or your internal developers, for example).
Is your site fully accessible to whomever visits, or are there barriers hiding any of the
content?

If it isn’t open for everyone, your portal must have a reliable and flexible access control
system. Often companies have partnerships that only grant selective access to certain
APIs; not all their APIs are available to all their partners. With an access control system, it’s
possible to manage API visibility without exposing the existence of anything else but what
is accessible.

There are companies that use developer portals only internally. In these cases, the portals
are not available for anyone outside of the company but may still need an access control
system to manage the API availability for different developer teams within different
business units.

144

Developer portals open to the public or to partners often have
custom visual elements such as logos and brand colors to make it
easier to recognize them. In the case of portals for internal use,
branding is usually less important.

How many APIs does your developer portal handle?
The number of APIs you offer might be an important factor in the decision-making
process about developer portals. If the portal provides access to hundreds of APIs
throughout an organization wherein many teams are building their own APIs, then that
portal will also act as a catalog of those APIs.

In these cases, it‘s crucial to make it possible to find (and use) the APIs across the various
teams. The whole purpose of APIs is to interconnect and to make it possible to use each
other's data (read our blog post ”What is an API?” to learn more). Portals with lots of APIs
have custom search functions to make the site-wide search easier and to provide better
search results.

If a portal manages only a handful of APIs, then a sophisticated search solution is not that
important. A small handful of APIs could be well presented in groups based on their
purpose.

What’s your API strategy and how can your developer portal support it?
Do you want to charge a price for API usage? If so, you need a dashboard where
administrators can track the usage of APIs (calls and responses, for example). This
analytical data is also useful if your business model is based on fixed prices—or if you
don’t charge for API usage at all, because you can keep an eye on your API traffic.

With the Apigee Edge Monetization extension, you can track API usage and even bill your
customers for using your services.

What content do you provide along with your APIs?
Companies want to expose not only APIs but other related content on their developer
portals. Writing, publishing, and improving documentation, blog posts, and onboarding

145

https://pronovix.com/blog/what-api
https://pronovix.com/blog/what-api

materials on a portal is a complex workflow and might involve a lot of people (technical
writers, copywriters, marketing people, editors).

Even if you have only a couple of technical writers working on API documentation, you
need the infrastructure to create and publish the content. The more varied content the
content on your portal, the more complex the infrastructure.

The answers to these questions help lay out a clear path you can follow during the
planning phase. Coming up next, we’ll discuss the most common requirements that arise
when implementing developer portals.

146

8 Common Customizations for
Drupal-based Developer
Portals

István Zoltán Szabó & Kristof Van Tomme
https://apigee.com/about/blog/api-technology/8-common-customizations-drupal-based-developer-portals

https://apigee.com/about/blog/api-technology/8-common-customizations-drupal-based-developer-portals
https://apigee.com/about/blog/api-technology/8-common-customizations-drupal-based-developer-portals

In the previous article, we covered four questions that help identify the purpose of a
developer portal and help to facilitate the decision-making process. Answering these
questions has helped us, in collaboration with the Apigee team, custom fit the Apigee
Drupal-based developer portal to a variety of Apigee’s customers' individual requirements
(when this post refers to developer portals, it is referring to the Drupal-based portal, not
the new, lightweight portals).

Here, we’ll discuss the most commonly requested custom implementations. You’ll see it’s
a diverse set, both in scope and in function.

SSO implementations
Single sign-on (SSO) is an authentication process that enables users to employ one set of
login credentials to access multiple services or applications. It simplifies the authentication
process, because if a system or a service (for example Gigya, Okta, or Google) already
authenticated a user, then the users don't have to login again at every visit.

Pronovix customers often have a large group of websites. With an SSO implementation,
it’s possible to log in only once on one website and enable a user to access the other sites
of the particular group without having to log in again.

Role-based access control
Role-based access control (RBAC) provides a scrupulously customizable access system
implemented on the Drupal developer portal. RBAC is able to control the accessibility of
the API products and the corresponding API documentation based on the groups created
and managed within the system.

With this system, developer portal administrators can create groups, assign content to
groups, add members (users) to them, and manage group visibility or the visibility of
specific group content individually.

There are more technical ways to apply RBAC to a developer portal. The method always
depends on the customer's exact requirements.

148

https://apigee.com/about/blog/developer/announcing-new-apigee-edge-experience
https://apigee.com/about/blog/developer/announcing-new-apigee-edge-experience

Landing pages
A landing page plays an important role on the business side of an
API strategy. By definition, it is the first thing users see and interact
with, so these pages are the first (and arguably most important) marketing,
sales, and onboarding tool of a portal.

This is the best place to involve your creative team in framing the kind of experience
that you will support elsewhere in your portal. It involves deep thinking about who your
API customers are and understanding what they will need to be successful. Furthermore,
because it is the most impactful branding opportunity for your API program, it will
determine much of the look and feel of the entire site.

At the same time, expect that you will evolve your landing page over time, both as you
learn what's working through user testing as well as just evolving with your API program
over time. Some great examples of landing pages include Kaiser Permanente and
AccuWeather.

Custom theming
When a developer portal is open to an external audience (a common use case), the site
owners will want to use their branding on the portals. They'll want to use the company
logo, the company colors, their own design, and custom menu architecture on the portal.
This way, it harmonizes with the other members of the company website family.

With Drupal, we have plenty of tools to provide non-trivial front-end solutions for the
customers. The process ideally also involves a UX review to make sure that the visual
design and information architecture will perform well in practice. Companies like Hiscox,
Hermes, and Digital Insight have their own developer portal theming applied.

Data and user import
Data and user import comes into play when a company already has a developer portal but
wants to change the platform. In this case, it’s important that the company can access all
of its data on the new platform without any loss, and convert the portal data to fit with the
new content architecture.

149

https://thrive.kaiserpermanente.org
https://thrive.kaiserpermanente.org
https://developer.accuweather.com
https://developer.accuweather.com

Security and module updates
Upgrading a developer portal from an old version to a new one usually requires security
and module updates. During the process, developers perform code reviews and update
where necessary to ensure better performance and compliance with the latest security
standards for the portal.

Content creation workflow
Developer portals are all about APIs and connection. To make the user's work easier,
developer portals have tutorials, onboarding pages, documentation pages, blog posts,
and many other materials that provide useful knowledge for developers about the portal's
APIs. Creating all of this content is a big challenge; it involves a lot of people, including
documentarians, developers, marketing staff, and content administrators.

A mature, well-structured, and detailed content creation workflow with the necessary
technical tools is a basic requirement to deploy various content and to synchronize the
work of the content teams. Content creation workflow is always based on specific roles.
These roles have different kinds of permission to access, create, edit, or delete the various
content types on the developer portal.

Custom search
Basic Drupal search might not fulfill the expectations for developer portals with large
numbers of APIs. In these cases, we build custom search functions that perform better.
Faceted search and Solr provide fast and relevant search results, for example.

The modified search makes it possible to search in API documentation or other special
content types, where basic search does not work, to create more interactive user
interfaces, and to filter the results on various ways.

This list isn’t exhaustive, but it helps prove the flexibility of the Drupal content
management system. Judging from the results of our customer engagements, we can say
that Drupal does a great job handling the wide variety of custom requirements on a
developer portal.

150

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

Tool the Docs
A developer track for documentarians at FOSDEM 2018,
dedicated to free and open source tools for the writing,

https://pronovix.com/tool-docs-fosdem-2018

https://pronovix.com/tool-docs-fosdem-2018
https://pronovix.com/tool-docs-fosdem-2018

Free & OS tools for the writing, managing, testing and rendering of
documentation

This year, a long time dream came true when we finally got a tech writers' DevRoom
accepted at FOSDEM, co-organized by Chris Ward and Kristof Van Tomme. Yay! A big
shout-out to the organizers of the conference and thank you for the presenters! With great
pleasure we share with you the recordings, slide decks and Laura's notes from Tool The
Docs.

A developer track for documentarians at FOSDEM 2018, dedicated to free and open
source tools for the writing, managing, testing and rendering of documentation.

• Ferit Topcu: Automating style guide documentation

• Stefan Knorr: DocBook Documentation at SUSE

• Honza Javorek: Test your API docs!

• Kitti Radovics: Docs like code in Drupal

• Stephen Finucane: A lion, a head, and a dash of YAML

• Shaun McCance: Mallard, Pintail, and other duck topics

• Jessica Parsons: Finding a home for docs

152

Automating style guide documentation
How we at Zalando Retail Dept automated our
Styleguide & source code and reduced the gap for
contribution
Ferit Topcu
Front-end Software Engineer, Zalando SE

Enable developers to create docs to a new feature asap, without switching
context.
As soon as a new feature is developed, instant testing against styleguide via inhouse
styleguide app. Stylelint (scss, css): ensure code consistency accross many developers
and UX. For each pull request they test build again and also lint style.

Development in components - document in components
useJSDocs documentationjs an OS library, generate Markdown from your JS docs (part of
CI) automated html output. Document all properties of a component, give an @example for
how to use that feature see demo project.

Docs part of Definition Of Done
Pull request only accepted with documentation had to be centrally decided and enforced
policy pro: easy onboarding

Low entry level for documentation

Markdown and GitHub knowledge is sufficient for a start.

JAMstack approach

see demo

Ferit's talk proposal outline

Ferit’s presentation and slides.

153

https://twitter.com/FokusMan
https://twitter.com/FokusMan
https://corporate.zalando.com/en
https://corporate.zalando.com/en
https://github.com/stylelint/stylelint
https://github.com/stylelint/stylelint
http://documentation.js.org
http://documentation.js.org
https://github.com/fokusferit/documentationjs-demo-project
https://github.com/fokusferit/documentationjs-demo-project
https://jamstack.org
https://jamstack.org
https://fabric-design.github.io/styleguide/#/atoms/badge
https://fabric-design.github.io/styleguide/#/atoms/badge
https://fosdem.org/2018/schedule/event/documentjs_to_document_a_styleguide_and_source_code/
https://fosdem.org/2018/schedule/event/documentjs_to_document_a_styleguide_and_source_code/
http://mirror.onet.pl/pub/mirrors/video.fosdem.org/2018/UD2.119/documentjs_to_document_a_styleguide_and_source_code.mp4
http://mirror.onet.pl/pub/mirrors/video.fosdem.org/2018/UD2.119/documentjs_to_document_a_styleguide_and_source_code.mp4
https://speakerdeck.com/fokusferit/automating-style-guide-documentation
https://speakerdeck.com/fokusferit/automating-style-guide-documentation

DocBook Documentation at SUSE
Automatically Ensuring Quality of SUSE Documentation
Stefan Knorr
Technical Writer at OpenSUSE Documentation Team

Workflow
Almost only docbook output. Accept input in many formats. Single-sourcing, multiple
docs, multiple formats. Git+GitHub+GitFlow model+PRs+reviews. The gitflow branching
model helps them keep track of the branches. OBS builds documentation RPM packages
(OS toolchain necessary)

DAPS

Solved the toolchain gaps they found with upstream DocBook (publishing gaps too).
Editor agnostic, they use many different editors. 1. profiling stylesheets, then 2. output
stylesheets. Does not handle translation, outsourced.

They use their own RelaxNG schema (DocBook 5.1) DAPS validate

Styleguide:
language & structure rules (avoid confusing readers and translation costs):

• synonyms, eg. use keycap to highlight keys, and change hit to press

• "soft" syntax rules (not to crash validation) eg. avoid wordy phrases, avoid lonely
sections

Their style-checker produces quite some output, with some false positives, this is not
ideal.

Future plans:

• Improve spell check, source lines (hard problem)

• need both html and plain txt output but the xml format does not translate well.

154

https://github.com/sknorr
https://github.com/sknorr
https://en.opensuse.org/openSUSE:Documentation_team
https://en.opensuse.org/openSUSE:Documentation_team
https://github.com/openSUSE/daps
https://github.com/openSUSE/daps

Travis CI:
Publish docs to GitHub pages. ToDo: Integrate a style-checker
without inundating people with error messages.

Stylesheet checks
DAPScompare, their own DocBook validation sheet. Future plan: need more
example docs.

PS: xxlt is only well documented in German.

Stefan's talk proposal outline

Stefan’s presentation and slides.

Test your API docs!
It's tested or it's broken
Honza Javorek
Maintainer of the API testing tool DREDD at @apiaryio

Every interface is Human User Interface
In the end humans need to leverage the interface, so consider and develop every interface
as UI. How to design good UI? Eat you own dogfood. How to position yourself as your
future user? Use Test Drive Development.

Behaviour Driven Development
Cucumber/Gherkin Makes what you create testable 1. How should it work?

	 1	 How would I test that?

	 2	 Write and run test as if it already existed. Test fails.

	 3	 Implement until it fits the original design. You fullfilled your original promise.

155

https://github.com/openSUSE/dapscompare
https://github.com/openSUSE/dapscompare
https://fosdem.org/2018/schedule/event/docbook_documentation_at_suse/
https://fosdem.org/2018/schedule/event/docbook_documentation_at_suse/
http://bofh.nikhef.nl/events/FOSDEM/2018/UD2.119/docbook_documentation_at_suse.mp4
http://bofh.nikhef.nl/events/FOSDEM/2018/UD2.119/docbook_documentation_at_suse.mp4
https://fosdem.org/2018/schedule/event/docbook_documentation_at_suse/attachments/slides/2412/export/events/attachments/docbook_documentation_at_suse/slides/2412/doc_at_suse_slides_fosdem_18.pdf
https://fosdem.org/2018/schedule/event/docbook_documentation_at_suse/attachments/slides/2412/export/events/attachments/docbook_documentation_at_suse/slides/2412/doc_at_suse_slides_fosdem_18.pdf
https://twitter.com/honzajavorek
https://twitter.com/honzajavorek
http://dredd.readthedocs.io/en/latest/
http://dredd.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development

REQUEST library, see Kenneth Reiz's essay "How I develop things and why"

Readme Driven Development: Responsive API design
"...instead of engineering something that will only get the job done, you start to interact
with the problem itself and build an interface that reacts to it."

"With Readme Driven Development, by the time you are done, the docs are already there."

Doctest: parse and run the examples, they have to run and succeed as in the readme. This
ensures sync between code (implementation) and readme (essential contract with your
users).

DREDD
Human and machine readable API.md.

DREDD works as doctest does for code.

Extend testing with hooks, most are contributed, you are welcome to add your own
language into the open library.

Honza's talk proposal outline

Honza’s presentation and slides.

Docs like code in Drupal
Introducing Open DevPortal, an open source CMS based documentation
tool
Kitti Radovics
Front-end Developer at Pronovix

What is docs like code

156

http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
https://www.kennethreitz.org/essays/how-i-develop-things-and-why
https://www.kennethreitz.org/essays/how-i-develop-things-and-why
https://dredd.readthedocs.io/en/latest/#
https://dredd.readthedocs.io/en/latest/#
https://fosdem.org/2018/schedule/event/test_api_docs_with_dredd/
https://fosdem.org/2018/schedule/event/test_api_docs_with_dredd/
http://ftp.belnet.be/mirror/FOSDEM/2018/UD2.119/test_api_docs_with_dredd.mp4
http://ftp.belnet.be/mirror/FOSDEM/2018/UD2.119/test_api_docs_with_dredd.mp4
https://speakerdeck.com/honzajavorek/test-your-api-docs
https://speakerdeck.com/honzajavorek/test-your-api-docs
https://pronovix.com/users/kitti
https://pronovix.com/users/kitti

In Docs like code, a team uses version control systems (like GitHub) to collaborate on
documentation inside a code repository.

Changes to the docs are then automatically deployed using CI/CD and static site
generators.

Advantages of docs like code
• Keep pace with code changes

• Collaborate with the contributors of the documentation

• Anyone can contribute (Technical Writers, Developers)

When to use a CMS for docs like code
• When regenerating the whole site for each edit is too slow (e.g. lots of content, or lots

of updates and writers)

• When you need other content than just docs (landing page, marketing, blog)

• When you want built-in search (keywords, tags, categories)

• When you need Role Based Access Control (internal & partner APIs)

• When you want interactive documentation that talks with the API

• When you need rich interactions for gamification

After the introduction Docs like code in Drupal, Kitti explained how she is working with her
team on a Drupal based solution that can import Markdown and Open API specifications
from GitHub.

Upstream docs
How a CMS could be used to integrate documentation from different repositories, while
maintaining a consistent UI for readers and for casual contributors.

Kitti's talk proposal outline

Kitti’s presentation and slides.

157

https://fosdem.org/2018/schedule/event/docs_like_code_in_drupal/
https://fosdem.org/2018/schedule/event/docs_like_code_in_drupal/
http://ftp.belnet.be/mirror/FOSDEM/2018/UD2.119/docs_like_code_in_drupal.mp4
http://ftp.belnet.be/mirror/FOSDEM/2018/UD2.119/docs_like_code_in_drupal.mp4
https://docs.google.com/presentation/d/e/2PACX-1vRGWy-Dfux2j0KSG_viI8MRw8RBjbUgpscTz3ZLcvdVvWsCpPcUDsy2WCSfQDezOU_hnZlrd3o4mboz/pub?start=false&loop=false&delayms=3000&slide=id.p3
https://docs.google.com/presentation/d/e/2PACX-1vRGWy-Dfux2j0KSG_viI8MRw8RBjbUgpscTz3ZLcvdVvWsCpPcUDsy2WCSfQDezOU_hnZlrd3o4mboz/pub?start=false&loop=false&delayms=3000&slide=id.p3

A lion, a head, and a dash of YAML
Extending Sphinx to automate your documentation
Stephen Finucane
Software Engineer at Redhat

Intro
reStructuredText - syntax (write) Docutils - parsing (write, individual files) Sphinx -
build, multiple cross-referenced files

Sphinx extensions
Roles & Directives in Docutils
Example for roles: recurring format defined in docutils as a role, eg. GitHub issue number
becomes a hyperlink in http output.

Create directive in docutils, eg. connecting to the GitHub API, import information on that
GitHub issue when it appears in the docs.

Events in Sphinx
(not in Docutils)

Sphinx contrib, hundreds of extensions, you can use those the contrib ones mixed with
your own.

Stephen's talk proposal outline

Stephen’s presentation and slides.

158

https://www.linkedin.com/in/stephenfinucane/
https://www.linkedin.com/in/stephenfinucane/
https://fosdem.org/2018/schedule/event/automating_documentation_with_sphinx_extensions/
https://fosdem.org/2018/schedule/event/automating_documentation_with_sphinx_extensions/
https://ftp.fau.de/fosdem/2018/UD2.119/automating_documentation_with_sphinx_extensions.mp4
https://ftp.fau.de/fosdem/2018/UD2.119/automating_documentation_with_sphinx_extensions.mp4
https://fosdem.org/2018/schedule/event/automating_documentation_with_sphinx_extensions/attachments/slides/2275/export/events/attachments/automating_documentation_with_sphinx_extensions/slides/2275/A_Lion,_a_Head,_and_a_Dash_of_YAML.pdf
https://fosdem.org/2018/schedule/event/automating_documentation_with_sphinx_extensions/attachments/slides/2275/export/events/attachments/automating_documentation_with_sphinx_extensions/slides/2275/A_Lion,_a_Head,_and_a_Dash_of_YAML.pdf

Mallard, Pintail, and other duck topics
topic-oriented help at the GNOME project
Shaun McCance
GNOME Developer, Writer, and Community Advocate. Runs the Open Help Conference &
Sprints. Upstream documentation projects at RedHat Open Source and Standards
department.

Mallard
Think about your docs differently:

	 1	 topics people want to read about, then
	 2	 build the docs bottom up.

Create a linking structure, where the links work both ways.

Can embed existing standards, vocabularies. Eg. its standard for xml translations.

Gives you a data model of your content.

The only problem with xml is that it's xml...

Need a lightweight syntax that has the possibilities of xml: ducktype.

Ducktype
Similar to Markdown or reStructuredText.

All the mallard-critical metadata are possible.

Allows nested notes, works completely with indentation, no limit to indentations.

Conditionals are still complicated but possible and easier to read than xml.

Anything xml does without its complicated syntax.

Can make use of all the xml tools e.g. validation.

159

https://fosdem.org/2018/schedule/speaker/shaun_mccance/
https://fosdem.org/2018/schedule/speaker/shaun_mccance/
http://projectmallard.org
http://projectmallard.org
http://projectmallard.org/ducktype/1.0/index.html
http://projectmallard.org/ducktype/1.0/index.html

Pintail
Supports Markdown and AsciiDoc but it's Mallard first.

A documentation publishing tool in the Mallard ecosystem.

Yelp.io

Config file: how to build the output.

Can mix documentation formats.

Search
Important to have context. Good first start to restrain search domain to the project where
you are.

Allow to change search domain for user (e.g. dropdown).

Shaun's talk proposal outline

Shaun’s presentation.

Finding a home for docs
How to choose the right "path" for documentation in open source projects
Jessica Parsons
Documentation Engineer at Netlify

Finding a home for the NetlifyCMS docs
Started with a readme on GitHub, like most projects...

Needed a website for all the docs: copied docs from GitHub to website (with Hugo), this
resulted in two sources of truth.

160

https://github.com/projectmallard/pintail
https://github.com/projectmallard/pintail
https://fosdem.org/2018/schedule/event/mallard_pintail_and_other_duck_topics/
https://fosdem.org/2018/schedule/event/mallard_pintail_and_other_duck_topics/
http://bofh.nikhef.nl/events/FOSDEM/2018/UD2.119/mallard_pintail_and_other_duck_topics.mp4
http://bofh.nikhef.nl/events/FOSDEM/2018/UD2.119/mallard_pintail_and_other_duck_topics.mp4
https://www.linkedin.com/in/verythorough/
https://www.linkedin.com/in/verythorough/
https://www.netlifycms.org/docs/
https://www.netlifycms.org/docs/

Markdown magic: comments inside your files, pull them into
.md files. Use it for taking from code repo to website repo, they
took out the docs from GitHub. Problem with CI/CD, it broke the
deploy previews.

Issue 750, 2017/okt/27: "Publishing docs in two places is no fun."

Want the ease of changing docs just as code changes go. Back to GitHub. Docs
edits in the same pull request.

Tag code releases and tag doc releases: you see the previous code with the matching
docs (if you did publish your docs with the code).

Jessica's talk proposal outline

Jessica’s presentation and slides.

Original recordings at Fosdem, licensed under the Creative Commons Attribution 2.0
Belgium Licence.

161

https://fosdem.org/2018/schedule/event/finding_a_home_for_docs/
https://fosdem.org/2018/schedule/event/finding_a_home_for_docs/
https://mirrors.dotsrc.org/fosdem/2018/UD2.119/finding_a_home_for_docs.mp4
https://mirrors.dotsrc.org/fosdem/2018/UD2.119/finding_a_home_for_docs.mp4
http://slides.com/verythorough/home-for-docs#/
http://slides.com/verythorough/home-for-docs#/
https://video.fosdem.org/2018/UD2.119/
https://video.fosdem.org/2018/UD2.119/

AUTHORS

http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b
http://pronovix.us6.list-manage.com/subscribe?u=5756ad9696bad5dc41c7b93f9&id=782d338a0b

Kathleen De Roo
As a technical writer and member of the
Pronovix content team, Kathleen is responsible for
writing, reviewing and editing website copy and blog
posts, mainly on developer portal documentation aspects.
She is currently also diving into the world of information
architecture.

She holds master's degrees in history and in archival science
& records management.

Bill Doerrfeld
Bill Doerrfeld is an API specialist, focusing on API economy
research. He is the Editor in Chief for Nordic APIs. He leads
content direction and oversees the publishing schedule for the
Nordic APIs blog. Bill personally reviews all submissions for
the blog and is always on the hunt for API stories. Follow him
on Twitter, or visit his personal website." Twitter -
@DoerrfeldBill

Kathleen De Roo 
Technical copywriter at
Pronovix

163

Bill Doerrfeld 
Editor in Chief at
Nordic APIs

Jason Harmon
Jason has a diverse background in backend
engineering at companies like AT&T, uShip and
PayPal. He led an engineering-wide initiative at PayPal
focusing on microservice definition using REST APIs on
one of the largest and most storied API programs in the
industry. He also has a wide range of startup experience as an
early software engineer at Coremetrics.com (now a division of
IBM), a Software Architect at Wayport (acquired by AT&T), and
ran product for the API program at uShip, a successful
shipping marketplace. He is a recognized industry expert on
the topic of API and microservice governance. He served on
the founding OpenAPI Initiative committees, and is a regular
speaker at API conferences around the world.

Erik Hogan
Erik Hogan has over 20 years of product management
experience across a variety of software and hardware
products in both small, venture-funded startups and large
organizations. He has typically focused on developing strong,
reusable platforms that enable a variety of customer solutions
and accelerate the business. More recently, he has driven the
API portfolio management and standardization program at
PayPal and is now working on elevating the internal PayPal
developer experience into a world class, strategic asset for
the organization. After many years in the Bay Area, he recently
relocated to Austin where he is enjoying a more humane
existence with his family.

Jason Harmon  
CPO at Typeform

164

Eric Hogan 
Director of product
management at
PayPal  

Tom Johnson
Tom Johnson is a technical writer for Amazon in
Sunnyvale, California. He writes a popular blog on
technical writing called Idratherbewriting.com, where
he explores topics such as API documentation, trends,
information design, and more. He also has an extensive online
course on API documentation that includes extensive tutorials
and other exercises you can follow to build your expertise with
APIs, including the OpenAPI specification, Swagger, and
more.

Diána Lakatos
Diána is a Senior Technical Writer at Pronovix. She is
specialized in API documentation, topic-based authoring, and
contextual help solutions. She writes, edits and reviews
software documentation, website copy, user documents, and
publications. She also enjoys working as a Program Monitor
for NHK World TV and Arirang TV.

Tom Johnson  
Technical writer at
Amazon Lab126

165

Diána Lakatos  
Senior Technical
Writer at Pronovix

Maxime
Locqueville
Maxime Locqueville worked on creating search plugins
for php frameworks and cms, then transitioned to work on
the Algolia documentation. He is now the lead developer in
charge of the docs, the DocSearch project, and customer
support tools & workflows

István Zoltán Szabó
Steve is a Technical Writer at Pronovix. He specializes in
developer and user documentation for developer portals, API
reference docs, technical articles and web copy.

Besides this, he's translating books from English to Hungarian
for a publishing company. Steve has a journalist/writer
background, his works are frequently published in various
online and printed journals.

Maxime Locqueville  
Lead Developer at
Algolia

166

István Zoltán Szabó 
Technical Writer at
Pronovix

Kristof Van
Tomme
Kristof Van Tomme is an open source strategist and
architect. He is the CEO and co-founder of Pronovix. He’s
got a degree in bioengineering and is a regular speaker at
conferences in the API, DevRel, and technical writing
communities. For a few years now he’s been building bridges
between the documentation and Drupal community. He is
co-organiser of the London Write the Docs meetup, and
cheerleader for the Amsterdam and Brussels Write the Docs
meetup groups. This year he is working on a number of new
initiatives to help API product owners learn from their peers
(API the Docs and the API product owner masterminds).

Jenny Wanger
I'm a product manager who believes that a user-centered
mindset can be applied to any process, and love to bring agile
and user-centered practices to unusual spaces like service
design. My experience designing digital products and tools,
structuring new business models, and facilitating design
thinking workshops at some of the world's largest companies
has provided me the skill set that can help a company
sustainably grow and scale.

Kristof Van Tomme  
CEO and co-founder
of Pronovix

167

Jenny Wanger 
Product Manager at
Arity

Bob Watson
Bob earned his Ph.D. in Human Centered
Design and Engineering from the University of
Washington in 2015. He is currently an Assistant
Professor at Mercer University researching and teaching
technical communication. Prior to his current position in
academia, he worked as a programmer-writer for 15 years and
documented countless APIs. Bob was also a software
developer for about 15 years before he discovered how much
he enjoyed technical communication.

Bob Watson 
Assistant Professor at
Mercer University

168

